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Generalized Quantifier Theory
[Barwise and Cooper, 1981]

(1) JeveryK = λP .λQ . P ⊆Q

(2) JnoK = λP .λQ . P ∩Q =∅

(3) JaK = λP .λQ . P ∩Q 6=∅

(4) JthreeK = λP .λQ . |P ∩Q| ≥ 3

(5) Jmore than threeK = λP .λQ . |P ∩Q|> 3

(6) Jless than threeK = λP .λQ . |P ∩Q|< 3

(7) Jat least threeK = λP .λQ . |P ∩Q| ≥ 3

(8) Jat most threeK = λP .λQ . |P ∩Q| ≤ 3

(9) Jexactly threeK = λP .λQ . |P ∩Q|= 3

(10) Jbetween three and five K = λP .λQ . 3≤ |P ∩Q| ≤ 5
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Features and bugs

? Uniformity of DPs

? Uniformity of natural language determiners

? Uniformity of bare (BNs, three), comparative-modified (CMs,
more/less than three), and superlative-modified numerals (SMs, at
least/most three)

Challenged with data pointing to non-uniformity!
Challenges led to theories very different from GQT.

Where exactly does GQT fail?
We will assess it w.r.t. four major yardsticks:

entailments scalar implicatures ignorance accept in DE env
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3 Entailments
[Horn, 1972, van Benthem, 1986, Krifka, 1999, Geurts and Nouwen, 2007, Buccola and Spector, 2016]

(11) a. Alice has 3 / more than 3 / at least 3 diamonds.
b.¬ The number of diamonds that Alice has is 2 or less / 3 or

less / 2 or less.
c. Alice has 3 / more than 3 / at least 3 diamonds, # if not

less.

(12) a. Alice has less than 3 / at most 3 diamonds.
b.¬ The number of diamonds that Alice has is 3 or more / 4

or more.
c. Alice has less than 3 / at most 3 diamonds, # if not more.
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The upper bound of BNs as a scalar implicature
[Horn, 1972, Spector, 2013]

(13) a. Alice has 3 diamonds.
b.¬ The number of diamonds that Alice has is 4 or more.
c. Alice has 3 diamonds, if not more.

? 3 P Q ambiguous between ‘at least 3 P Q’ and ‘exactly 3 P Q’
? One way to get this is to say that 3 P Q entails ‘at least 3 P Q’,
derives ‘not at least 4 P Q’ via scalar implicature.
? Predicted scalar alternatives of BNs, CMs, and SMs:

(14) a. ScalAlts(3 P Q)
= {. . . , 2 P Q, 4 P Q, . . . }

b. ScalAlts(more/less than 3 P Q)
= {. . . , more/less than 2 P Q, more/less than 4 P Q, . . . }

c. ScalAlts(at most/least 3 P Q)
= {. . . , at most/least 2 P Q, at most/least 4 P Q, . . . }
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3/7 Scalar implicatures
[Krifka, 1999, Fox and Hackl, 2006, Mayr, 2013, Coppock and Brochhagen, 2013, Kennedy, 2015,
Spector, 2015]

? Unembedded:

(15) Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3
diamonds.
  ¬ Alice has 4 / *more than 4 / *less than 2 / *at most 2 /
*at least 4 diamonds.
(Total predicted meaning: She has exactly 3 / exactly 4 /
exactly 2 / exactly 3 / exactly 3 diamonds.)

? In the scope of a universal operator:

(16) Alice is required to have 3 / more than 3 / less than 3 / at
most 3 / at least 3 diamonds.
  ¬ Alice is required to have 4 / more than 4 / less than 2 /
at most 2 / at least 4 diamonds.
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3/7 Scalar implicatures
[Mayr, 2013]

? In the antecedent of a conditional:

(17) If Alice has 3 / more than 3 / less than 3 / at most 3 / at least
3 diamonds she wins.
  ¬ If Alice has 2 / more than 2 / less than 4 / at most 4 / at
least 2 diamonds she wins.

? In the scope of negation:

(18) Alice doesn’t have 3 / more than 3 / less than 3 / *at most 3 /
*at least 3 diamonds.
  ¬ Alice doesn’t have *2 / *more than 2 / *less than 4 / *at
most 4 / *at least 2 diamonds.
(Total predicted meaning: She has exactly 2 / exactly 3 /
exactly 3 / exactly 4 / exactly 2 diamonds.)
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3 Scalar implicatures
[Cummins et al., 2012]

? Unembedded, coarse granularity scale:

(19) (example from [Spector, 2014, 42])
Context: Grades are attributed on the basis of the number of
problems solved. People who solve between 1 and 5 problems get
a C. People who solve more than 5 problems but fewer than 9
problems get a B, and people who solve 9 problems or more get
an A.

John solved more than 5 problems. Peter solved more than 9.
  ¬ John solved more than 9.
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7 Ignorance
[Geurts and Nouwen, 2007, Nouwen, 2010, Nouwen, 2015, Coppock and Brochhagen, 2013,
Kennedy, 2015, Mendia, 2015, Spector, 2015]

? Unembedded:

(20) Alice has 3 diamonds.
(*  The speaker is not sure whether Alice has 3 or 4 or . . . .)

(21) Alice has more than 3 / less than 3 diamonds.
(  The speaker is not sure whether Alice has 4 or 5 or . . ./ 2
or 1 or . . . )

(22) Alice has at least 3 / at most 3 diamonds.
*(  The speaker is not sure whether Alice has 3 or 4 or . . ./ 3
or 2 or . . . )
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7 Ignorance
[Kennedy, 2015]

? In the scope of a universal operator:

(23) Alice is required to have 3 diamonds.
6  The speaker is not sure whether Alice is required to have 3
or 4 or . . .

(24) Alice is required to have more than 3 / less than 3 / at most 3
/ at least 3 diamonds.
(  The speaker is not sure whether Alice is required to have
4 or 5 or . . ./ 2 or 1 or . . ./ 3 or 2 or . . ./ 3 or 4 or . . . .)
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7 Ignorance

? In the scope of negation:

(25) Alice doesn’t have 3 diamonds.
6  The speaker is not sure whether Alice doesn’t have 3 or 4
or . . .

(26) Alice doesn’t have more than 3 / less than 3 diamonds.
(  The speaker is not sure whether Alice has 3 or 2 or . . ./ 3
or 4 or . . . )
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7 Acceptability in DE environments
[Nilsen, 2007, Geurts and Nouwen, 2007, Cohen and Krifka, 2014, Spector, 2015]

? In the scope of negation:

(27) Alice doesn’t have 3 / more than 3 / less than 3 diamonds.
→ Alice has 2 or less / 3 or less / 3 or more diamonds. 3

(28) Alice doesn’t have *at least three / *at most three diamonds.
→ Alice has 2 or less / 4 or more diamonds. 7

? In the antecedent of a conditional:

(29) If Alice has 3 / more than 3 / less than 3 / at most 3 / at least
3 diamonds, she wins.

? In the restriction of a universal:

(30) Everyone who has 3 / more than 3 / less than 3 / at most 3 /
at least 3 diamonds wins.
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What is GQT missing?

entailments scalar implicatures ignorance accept in DE env
3 3+ ? ? ?

Sketch of the solution:

? Keep the GQT way of getting entailments.
? Keep scalar implicatures.
? Add domain alternatives [Kennedy, 2015, Spector, 2015].
? Make the domain alternatives of SMs obligatory [Spector, 2015].
? Try to derive rather than stipulate the number, type, and status
of the alternatives in each case.
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Proposal: Truth conditions and presupposition

the numeral || [Link, 1983, Buccola and Spector, 2016]

JthreeK = 3 JisCardK (3) = λx . |x |= 3

much/little || [Seuren, 1984, Kennedy, 1997]

JmuchK (n) = λd . d ≤ n JlittleK (n) = λd . d ≥ n

truth conditions || [Krifka, 1999, Von Stechow, 2005, Heim, 2007, Hackl, 2009]

(∃ (n P))(Q) = 1 iff ∃x[|x |= n∧ P(x)∧Q(x)]
[comp(much/little)](n)(P)(Q) = 1 iff |P ∩Q| ∈ Jmuch/littleK (n)
[sup(much/little)](n)(P)(Q) = 1 iff |P ∩Q| ∈ Jmuch/littleK (n)

the presupposition of [sup] || [Hackl, 2009, Gajewski, 2010]

| Jmuch/littleK (n)| ≥ 2

16 /42



3 Entailments

(31) 3 P Q:
∃x[|x |= 3∧ P(x)∧Q(x)]⇒ |P ∩Q| ≥ 3 (l.b.)

(32) more than 3 P Q:
|P ∩Q| ∈ JmuchK (3)⇔|P ∩Q| ∈ {4, 5, . . . } (l.b.)

(33) less than 3 P Q:
|P ∩Q| ∈ JlittleK (3)⇔|P ∩Q| ∈ {. . . , 0, 1, 2} (u.b.)

(34) at most 3 P Q:
|P ∩Q| ∈ JmuchK (3)⇔|P ∩Q| ∈ {. . . , 0, 1, 2, 3} (u.b.)

(35) at least 3 P Q:
|P ∩Q| ∈ JlittleK (3)⇔|P ∩Q| ∈ {3,4, . . . } (l.b.)
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Proposal: Alternatives

Scalar alternatives can be obtained by replacing n in the numeral
argument with its scalar alternatives (other numerals)

BNs: {∃x[|x |= m∧ P(x)∧Q(x)] : m ∈ S}

CMs: {|P ∩Q| ∈ Jmuch/littleK (m) : m ∈ S}

SMs: {|P ∩Q| ∈ Jmuch/littleK (m) : m ∈ S}

Domain alternatives can be obtained by replacing the whole nu-
meral argument with its subsets

BNs: NA (the numeral argument is just a degree)

CMs: {|P ∩Q| ∈ A : A⊆ Jmuch/littleK (n)}

SMs: {|P ∩Q| ∈ A : A⊆ Jmuch/littleK (n)} active by presup!
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Scalar alternatives

ScalAlts(3 P Q)
= ScalAlts(∃x[|x |= 3∧ P(x)∧Q(x)])
= {. . . , ∃x[|x |= 2∧ P(x)∧Q(x)], ∃x[|x |= 4∧ P(x)∧Q(x)], . . . }
= {. . . , 2 P Q, 4 P Q, . . . }

ScalAlts(more/less than 3 P Q)
= ScalAlts(|P ∩Q| ∈ Jmuch/littleK (3))
= {. . . , |P ∩Q| ∈ Jmuch/littleK (2), |P ∩Q| ∈ Jmuch/littleK (4), . . . }
= {. . . , more/less than 2 P Q, more/less than 4 P Q, . . . }

ScalAlts(at most/least 3 P Q)
= ScalAlts(|P ∩Q| ∈ Jmuch/littleK (3))
= {. . . , |P ∩Q| ∈ Jmuch/littleK (2), |P ∩Q| ∈ Jmuch/littleK (4), . . . }
= {. . . , at most/least 2 P Q, at most/least 4 P Q, . . . }
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Subdomain alternatives

SubDomAlts(3 P Q): NA

SubDomAlts(more/less than 3 P Q)
= SubDomAlts(|P ∩Q| ∈ Jmuch/littleK (3))
= SubDomAlts(|P ∩Q| ∈ {4,5, . . . }/{0,1, 2})
= {|P ∩Q| ∈ {4}, |P ∩Q| ∈ {4,7}, . . . } / {|P ∩Q| ∈ {0},
|P ∩Q| ∈ {0, 1}, . . . }

SubDomAlts(at most/least 3 P Q)
= SubDomAlts(|P ∩Q| ∈ Jmuch/littleK (3))
= SubDomAlts(|P ∩Q| ∈ {0, 1,2, 3}/{3,4, . . . })
= {|P ∩Q| ∈ {0}, |P ∩Q| ∈ {1,3}, . . . } / {|P ∩Q| ∈ {3},
|P ∩Q| ∈ {4, 8}, . . . } active by presup!
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Proposal: Implicature calculation system
[Chierchia, 2013]

O to exhaustify the scalar alternatives of BNs, CMs, and SMs

(36) JOALT(φ)K
g,w = JφKg,w ∧∀p ∈ JφKALT [p→ λw′ . JφKg,w′ ⊆ p]

OPS to exhaustify the subdomain alternatives of CMs and SMs

(37) OPS
ALT(φ) is defined iff OS

ALT(φ) ⊂ φ.
Whenever defined, OPS

ALT(φ) = OS
ALT (φ),

where

a. OS
ALT(φw) = φw ∧∀p ∈ ALT [π(p)w→ π(λw .φw) ⊆ π(p)],

where
(i) π(q) = αq ∧ πq .

� last resort, silent, matrix-level, universal doxastic modal
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3 Implicatures from scalar alternatives
considering only alternatives that do not lead to the problematic ‘exactly’ meanings

? Unembedded:

(38) OScalAlts (Alice has 3 / more than 3 / less than 3 / at most 3 / at
least 3 diamonds.)
  ¬ Alice has 4 / more than 5 / less than 1 / at most 1 / at
least 5 diamonds.

implicatures

? In the scope of a universal operator:

(39) OScalAlts (Alice is required to have 3 / more than 3 / less than 3
/ at most 3 / at least 3 diamonds.)
  ¬ Alice is required to have 4 / more than 4 / less than 2 /
at most 2 / at least 4 diamonds.

implicatures
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3 Implicatures from scalar alternatives
considering only alternatives that do not lead to the problematic ‘exactly’ meanings

? In the antecedent of a conditional:

(40) OScalAlts (If Alice has 3 / more than 3 / less than 3 / at most 3 /
at least 3 diamonds she wins.)
  ¬ If Alice has 2 / more than 2 / less than 4 / at most 4 / at
least 2 diamonds she wins.

implicatures

? In the scope of negation:

(41) OScalAlts (Alice doesn’t have 3 / more than 3 / less than 3 / *at
most 3 / *at least 3 diamonds.)
  ¬ Alice doesn’t have 1 / more than 1 / less than 5 / at most
5 / at least 1 diamonds.

implicatures
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3 Implicatures from subdomain alternatives

? Unembedded:

(42) Alice has more/less than 3 / at most/least 3 diamonds.

a. |P ∩Q| ∈ D no OPS
SubDomAlts !

b. OPS
SubDomAlts (|P ∩Q| ∈ D)
= |P ∩Q| ∈ D ∧¬(|P ∩Q| ∈ A)∧¬(|P ∩Q| ∈ B) . . . , for all
A, B, · · · ⊂ D, =⊥ contradiction!

c. OPS
SubDomAlts � (|P ∩Q| ∈ D)
=�|P ∩Q| ∈ D ∧¬� (|P ∩Q| ∈ A)∧¬� (|P ∩Q| ∈ B) . . . ,
for all A, B, · · · ⊂ D ignorance implicatures

? Ignorance optional for CMs, obligatory for SMs.
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3 Implicatures from subdomain alternatives
clash with ‘exactly’-inducing implicature from scalar alternatives!

(43) Alice has more than 2 / at least 3 diamonds.
OPS

SubDomAlts �OScalAlts (|P ∩Q| ∈ {3, 4, . . . })

=�OScalAlts (|P ∩Q| ∈ {3,4, . . . }) ∧ ¬� (|P ∩Q| ∈ {3}) ∧
¬� (|P ∩Q| ∈ {4,7}) ∧ ¬ . . .

=�(|P ∩Q| ∈ {3}) ∧ ¬� (|P ∩Q| ∈ {3}) ∧
¬� (|P ∩Q| ∈ {4,7}) ∧ ¬ . . .

=⊥

? Prune offending SubDomAlts? That would violate OPS
SubDomAlts , so no. 7

? Prune offending ScalAlt? 3
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3 Implicatures from subdomain alternatives

? In the scope of a universal operator:

(44) Alice is required to have more/less than 3 / at most/least 3
diamonds.

a.�(|P ∩Q| ∈ D) no OPS
SubDomAlts !

b.� OPS
SubDomAlts (|P ∩Q| ∈ D) contradiction!

c. OPS
SubDomAlts (�(|P ∩Q| ∈ D)) non-ignorance implicatures

d. OPS
SubDomAlts (|P ∩�Q| ∈ D) contradiction!

e. OPS
SubDomAlts (�(|P ∩�Q| ∈ D)) ignorance implicatures

? Ignorance optional for both CMs and SMs.
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3 Implicatures from subdomain alternatives

? In the scope of negation:

(45) Alice doesn’t have more/less than 3 / *at most/least 3
diamonds.

a. ¬(|P ∩Q| ∈ D) no OPS
SubDomAlts !

b.¬OPS
SubDomAlts (|P ∩Q| ∈ D) contradiction!

c. OPS
SubDomAlts ¬(|P ∩Q| ∈ D)

= ¬(|P ∩Q| ∈ D) no proper strengthening!

d. OPS
SubDomAlts �¬(|P ∩Q| ∈ D)

=�¬(|P ∩Q| ∈ D) no proper strengthening!

? No ignorance implicatures sanctioned formally.
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3 Acceptability in DE environments

? In the scope of negation:

(46) Alice doesn’t have more/less than three / *at most/least three
diamonds.

a. ¬(|P ∩Q| ∈ D}) no OPS
SubDomAlts !

b.¬OPS
SubDomAlts (|P ∩Q| ∈ D) contradiction!

c. OPS
SubDomAlts ¬(|P ∩Q| ∈ D) no proper strengthening!

d. OPS
SubDomAlts �¬(|P ∩Q| ∈ D) no proper strengthening!

? CMs can be parsed as in (a). No parsing option for SMs.
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3 Acceptability in DE environments

? In the antecedent of a conditional / restriction of a universal:

(47) Everyone who has more/less than 3 / at most/least 3
diamonds wins.

∀x[# di x has ∈ D→ . . . ] ∧ ∃x[# of di x has ∈ D]
⇓ ⇑

∀x[# di x has ∈ D′→ . . . ] ∧ ∃x[# of di x has ∈ D′]

? SubDomAlts not entailed, so they must be false.
? However, negating them leads to contradiction.
? We can rescue the parse with �.
? Ignorance implicatures about the presupposition: The speaker is
sure that here is someone such that the # of diamonds they have is
in D, but not sure about any subsets of D.
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Taking stock

entailments scalar implicatures ignorance accept in DE env
3 3 3 3
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Compositionality

Lexical entries for the numeral, much/little, [comp], and [sup] that

? give us the right truth conditions and a natural way to derive the
number, type, and status of the alternatives in each case;

? link up naturally to meanings elsewhere;

? ensure that the resulting bare or modified numeral DPs will pose
no further compositional challenges, as they are generalized
quantifiers.
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Predicative uses

(48) The three / more/less than three / at most/least three NP

(49) We are three / more/less than three / at most/least three.

(50) Plant a tree every three houses.

(51) If two relatives of mine die, I’ll be rich.

? Use [Partee, 1987]’s BE to typeshift the generalized quantifier
meanings into predicative meanings:

(52) JBEK = λQ〈αt,t〉 .λxα .Q(λyα . y = x)

(53) JBEK (Jat most three studentsK)
= [λQ〈et,t〉 .λxe .Q(λye . y = x)](λQ〈e,t〉 . |P∩Q| ∈ JmuchK (3))
= λxe . [λQ〈e,t〉 . |P ∩Q| ∈ JmuchK (3)](λye . y = x)
= λxe . |P ∩λye . y = x | ∈ JmuchK (3)
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Constituent structure

∃x[|x |= 3∧ P(x)∧Q(x)]

DP

D
∅∃

#P
λx . |x |= 3∧ P(x)

NumP
JisCardK (3)

#’
P

#
SG/PL

NP
P

VP
Q
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Constituent structure

Jcomp/supK (Jmuch/littleK)(n)(P)(Q)

#P
λQ . Jcomp/supK (Jmuch/littleK)(n)(P)(Q)

ModP

Mod

[comp]/[sup] much/little

NumP
n

#’
P

#
SG/PL

NP
P

VP
Q
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Conclusion

? A unified account of bare and modified numerals that builds
conservatively on the original GQT account.

? Derives their patterns w.r.t. entailments, scalar implicatures,
ignorance, and acceptability in DE environments from their
morphological pieces.

? The account is more comprehensive, has better empirical
coverage, and is less stipulative than previous accounts.
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