An extent-based GQT-style unified implicature account of bare and modified numerals 3 · more/less than 3 · at most/least 3

Teodora Mihoc (Harvard University)

@ ILLC, University of Amsterdam, June 12, 2018

Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion

Generalized Quantifier Theory

[Barwise and Cooper, 1981]

- (1) $\llbracket every \rrbracket = \lambda P \cdot \lambda Q \cdot P \subseteq Q$
- (2) $\llbracket \operatorname{no} \rrbracket = \lambda P \cdot \lambda Q \cdot P \cap Q = \emptyset$
- (3) $\llbracket a \rrbracket = \lambda P \cdot \lambda Q \cdot P \cap Q \neq \emptyset$
- (4) $\llbracket \text{three} \rrbracket = \lambda P \cdot \lambda Q \cdot |P \cap Q| \ge 3$
- (5) [more than three] = $\lambda P \cdot \lambda Q \cdot |P \cap Q| > 3$
- (6) [[less than three]] = $\lambda P \cdot \lambda Q \cdot |P \cap Q| < 3$
- (7) $[at least three] = \lambda P \cdot \lambda Q \cdot |P \cap Q| \ge 3$
- (8) $[at most three] = \lambda P \cdot \lambda Q \cdot |P \cap Q| \le 3$
- (9) $[[exactly three]] = \lambda P \cdot \lambda Q \cdot |P \cap Q| = 3$
- (10) [[between three and five]] = $\lambda P \cdot \lambda Q \cdot 3 \le |P \cap Q| \le 5$

Features and bugs

- ★ Uniformity of DPs
- * Uniformity of natural language determiners

```
* Uniformity of bare (BNs, three), comparative-modified (CMs,
more/less than three), and superlative-modified numerals (SMs, at
least/most three)
                 Challenged with data pointing to non-uniformity!
               Challenges led to theories very different from GQT.
                                    Where exactly does GQT fail?
                      We will assess it w.r.t. four major yardsticks:
               scalar implicatures | ignorance | accept in DE env
 entailments
```

✓ Entailments

[Horn, 1972, van Benthem, 1986, Krifka, 1999, Geurts and Nouwen, 2007, Buccola and Spector, 2016]

(11) a. Alice has 3 / more than 3 / at least 3 diamonds.

- b. \neg The number of diamonds that Alice has is 2 or less / 3 or less / 2 or less.
- c. Alice has 3 / more than 3 / at least 3 diamonds, # if not less.

- (12) a. Alice has less than 3 / at most 3 diamonds.
 - b. \neg The number of diamonds that Alice has is 3 or more / 4 or more.
 - c. Alice has less than 3 / at most 3 diamonds, # if not more.

The upper bound of BNs as a scalar implicature

[Horn, 1972, Spector, 2013]

(13) a. Alice has 3 diamonds.

b. ¬ The number of diamonds that Alice has is 4 or more.c. Alice has 3 diamonds, if not more.

- $\star~$ 3 P Q ambiguous between 'at least 3 P Q' and 'exactly 3 P Q'
- * One way to get this is to say that 3 P Q entails 'at least 3 P Q', derives 'not at least 4 P Q' via scalar implicature.
- * Predicted scalar alternatives of BNs, CMs, and SMs:
- (14) a. ScalAlts(3 P Q)

 $= \{\ldots, 2 P Q, 4 P Q, \ldots\}$

b. ScalAlts(more/less than 3 P Q)

 $= \{\dots, more/less than 2 P Q, more/less than 4 P Q, \dots\}$

c. ScalAlts(at most/least 3 P Q)

 $= \{\dots, at most/least 2 P Q, at most/least 4 P Q, \dots\}$

✓/X Scalar implicatures

[Krifka, 1999, Fox and Hackl, 2006, Mayr, 2013, Coppock and Brochhagen, 2013, Kennedy, 2015, Spector, 2015]

* Unembedded:

(15) Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.
→ ¬ Alice has 4 / *more than 4 / *less than 2 / *at most 2 / *at least 4 diamonds.
(Total predicted meaning: She has exactly 3 / exactly 4 / exactly 2 / exactly 3 / exactly 3 diamonds.)

* In the scope of a universal operator:

(16) Alice is required to have 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.
→ ¬ Alice is required to have 4 / more than 4 / less than 2 / at most 2 / at least 4 diamonds.

✓/✗ Scalar implicatures

[Mayr, 2013]

 \star In the antecedent of a conditional:

(17) If Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds she wins.
→ ¬ If Alice has 2 / more than 2 / less than 4 / at most 4 / at least 2 diamonds she wins.

 \star In the scope of negation:

(18) Alice doesn't have 3 / more than 3 / less than 3 / *at most 3 / *at least 3 diamonds.

 $\rightsquigarrow \neg$ Alice doesn't have *2 / *more than 2 / *less than 4 / *at most 4 / *at least 2 diamonds.

(Total predicted meaning: She has exactly 2 / exactly 3 / exactly 3 / exactly 4 / exactly 2 diamonds.)

✓ Scalar implicatures

[Cummins et al., 2012]

★ Unembedded, *coarse granularity scale*:

(19) (example from [Spector, 2014, 42])
Context: Grades are attributed on the basis of the number of problems solved. People who solve between 1 and 5 problems get a C. People who solve more than 5 problems but fewer than 9 problems get a B, and people who solve 9 problems or more get an A.

John solved more than 5 problems. Peter solved more than 9. $\rightsquigarrow \neg$ John solved more than 9.

X Ignorance

[Geurts and Nouwen, 2007, Nouwen, 2010, Nouwen, 2015, Coppock and Brochhagen, 2013, Kennedy, 2015, Mendia, 2015, Spector, 2015]

* Unembedded:

(20) Alice has 3 diamonds.

(* \rightsquigarrow The speaker is not sure whether Alice has 3 or 4 or)

(21) Alice has more than 3 / less than 3 diamonds.
(→ The speaker is not sure whether Alice has 4 or 5 or ... / 2 or 1 or ...)

(22) Alice has at least 3 / at most 3 diamonds.
*(→ The speaker is not sure whether Alice has 3 or 4 or ... / 3 or 2 or ...)

[Kennedy, 2015]

* In the scope of a universal operator:

(23) Alice is required to have 3 diamonds.

 $\not\rightsquigarrow$ The speaker is not sure whether Alice is required to have 3 or 4 or ...

(24) Alice is required to have more than 3 / less than 3 / at most 3 / at least 3 diamonds.

(\rightsquigarrow The speaker is not sure whether Alice is required to have 4 or 5 or .../ 2 or 1 or .../ 3 or 2 or .../ 3 or 4 or)

✗ Ignorance

★ In the scope of negation:

(25) Alice doesn't have 3 diamonds.

 $\not\rightsquigarrow$ The speaker is not sure whether Alice doesn't have 3 or 4 or ...

(26) Alice doesn't have more than 3 / less than 3 diamonds.
(→ The speaker is not sure whether Alice has 3 or 2 or ... / 3 or 4 or ...)

✗ Acceptability in DE environments

[Nilsen, 2007, Geurts and Nouwen, 2007, Cohen and Krifka, 2014, Spector, 2015]

★ In the scope of negation:

(27) Alice doesn't have 3 / more than 3 / less than 3 diamonds. \rightarrow Alice has 2 or less / 3 or less / 3 or more diamonds.

(28) Alice doesn't have *at least three / *at most three diamonds. \rightarrow Alice has 2 or less / 4 or more diamonds.

* In the antecedent of a conditional:

(29) If Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds, she wins.

* In the restriction of a universal:

(30) Everyone who has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds wins.

What is GQT missing?

entailments	scalar implicatures	ignorance	accept in DE env
✓	✓+?	?	?

Sketch of the solution:

- ★ Keep the GQT way of getting entailments.
- ★ Keep scalar implicatures.
- * Add domain alternatives [Kennedy, 2015, Spector, 2015].
- * Make the domain alternatives of SMs obligatory [Spector, 2015].
- $\star\,$ Try to derive rather than stipulate the number, type, and status of the alternatives in each case.

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion

Proposal: Truth conditions and presupposition

the numeral	[[Link, 1983, Buccola and Spector, 2016]		
[[three]] = 3	$\llbracket is_{Card} \rrbracket (3) = \lambda x . x = 3$		
much/little	[Seuren, 1984, Kennedy, 1997]		
$\llbracket \operatorname{much} \rrbracket(n) = \lambda d . d \leq n$	$\llbracket \text{little} \rrbracket (n) = \lambda d . d \ge n$		
truth conditions [Krifka,	1999, Von Stechow, 2005, Heim, 2007, Hackl, 2009]		
(∃ (n P))(Q) [comp(much/little)](n)(P)(Q) [sup(much/little)](n)(P)(Q)	$= 1 \text{ iff } \exists x[x = n \land P(x) \land Q(x)]$ = 1 iff $ P \cap Q \in \overline{[[much/little]](n)}$ = 1 iff $ P \cap Q \in [[much/little]](n)$		
the presupposition of [sup]	[Hackl, 2009, Gajewski, 2010]		

 $| [[much/little]](n)| \ge 2$

✓ Entailments

$$(31) 3 P Q:$$

$$\exists x[|x| = 3 \land P(x) \land Q(x)] \Rightarrow |P \cap Q| \ge 3$$
(1.b.)

(32) more than 3 P Q:

$$|P \cap Q| \in \overline{[[much]]}(3) \Leftrightarrow |P \cap Q| \in \{4, 5, ...\}$$
 (1.b.)

$$(33) less than 3 P Q:$$

$$|P \cap Q| \in \overline{[[little]]} (3) \Leftrightarrow |P \cap Q| \in \{\dots, 0, 1, 2\}$$
(u.b.)

(34) at most 3 P Q:

$$|P \cap Q| \in \llbracket \text{much} \rrbracket (3) \Leftrightarrow |P \cap Q| \in \{\dots, 0, 1, 2, 3\}$$
(u.b.)

(35) at least 3 P Q:

$$|P \cap Q| \in [[little]] (3) \Leftrightarrow |P \cap Q| \in \{3, 4, ...\}$$
 (l.b.)

Proposal: Alternatives

Scalar alternatives can be obtained by replacing n in the numeral argument with its scalar alternatives (other numerals)

BNs:
$$\{\exists x[|x| = m \land P(x) \land Q(x)]: m \in S\}$$

CMs: { $|P \cap Q| \in \overline{[[much/little]](m)}: m \in S$ }

SMs: $\{|P \cap Q| \in [[much/little]](m): m \in S\}$

Domain alternatives can be obtained by replacing the whole numeral argument with its subsets

BNs: NA (the numeral argument is just a degree) CMs: $\{|P \cap Q| \in A : A \subseteq \overline{[much/little]](n)}$ SMs: $\{|P \cap Q| \in A : A \subseteq [much/little]](n)\}$ active by presup!

Scalar alternatives

$$ScalAlts(3 P Q)$$

$$= ScalAlts(\exists x[|x| = 3 \land P(x) \land Q(x)])$$

$$= \{\dots, \exists x[|x| = 2 \land P(x) \land Q(x)], \exists x[|x| = 4 \land P(x) \land Q(x)], \dots\}$$

$$= \{\dots, 2 P Q, 4 P Q, \dots\}$$

$\begin{aligned} &\text{ScalAlts}(\textit{more/less than 3 P Q}) \\ &= \text{ScalAlts}(|P \cap Q| \in \overline{[\![\text{much/little}]\!]}(3)) \\ &= \{ \dots, |P \cap Q| \in \overline{[\![\text{much/little}]\!]}(2), |P \cap Q| \in \overline{[\![\text{much/little}]\!]}(4), \dots \} \\ &= \{ \dots, \textit{more/less than 2 P Q}, \textit{more/less than 4 P Q}, \dots \} \end{aligned}$

ScalAlts(*at most/least 3 P Q*)

- $= \text{ScalAlts}(|P \cap Q| \in [[\text{much/little}]] (3))$
- $= \{ \dots, |P \cap Q| \in [[much/little]] (2), |P \cap Q| \in [[much/little]] (4), \dots \}$
- $= \{\dots, at most/least 2 P Q, at most/least 4 P Q, \dots\}$

Subdomain alternatives

SubDomAlts(3 P Q): NA

SubDomAlts(more/less than 3 P Q) = SubDomAlts($|P \cap Q| \in \overline{[much/little]]}(3)$) = SubDomAlts($|P \cap Q| \in \{4, 5, ...\}/\{0, 1, 2\}$) = $\{|P \cap Q| \in \{4\}, |P \cap Q| \in \{4, 7\}, ...\}/\{|P \cap Q| \in \{0\}, |P \cap Q| \in \{0, 1\}, ...\}$

SubDomAlts(at most/least 3 P Q)

- $= \text{SubDomAlts}(|P \cap Q| \in [[\text{much/little}]] (3))$
- $= \text{SubDomAlts}(|P \cap Q| \in \{0, 1, 2, 3\} / \{3, 4, ...\})$
- $= \{ |P \cap Q| \in \{0\}, |P \cap Q| \in \{1,3\}, \dots\} / \{ |P \cap Q| \in \{3\}, \dots\} \}$

 $|P \cap Q| \in \{4,8\}, \ldots\}$

active by presup!

Proposal: Implicature calculation system

[Chierchia, 2013]

 O^{PS}

to exhaustify the scalar alternatives of BNs, CMs, and SMs

$$(36) \left[\left[O_{ALT}(\phi) \right] \right]^{g,w} = \left[\left[\phi \right] \right]^{g,w} \land \forall p \in \left[\left[\phi \right] \right]^{ALT} \left[p \to \lambda w' \cdot \left[\left[\phi \right] \right]^{g,w'} \subseteq p \right]$$

to exhaustify the subdomain alternatives of CMs and SMs

(37) $O_{ALT}^{PS}(\phi)$ is defined iff $O_{ALT}^{S}(\phi) \subset \phi$. Whenever defined, $O_{ALT}^{PS}(\phi) = O_{ALT}^{S}(\phi)$, where

a. $O_{ALT}^{S}(\phi_w) = \phi_w \land \forall p \in ALT \ [\pi(p)_w \to \pi(\lambda w \cdot \phi_w) \subseteq \pi(p)],$ where (i) $\pi(q) = {}^{\alpha}q \land {}^{\pi}q$.

last resort, silent, matrix-level, universal doxastic modal

✓ Implicatures from scalar alternatives

considering only alternatives that do not lead to the problematic 'exactly' meanings

* Unembedded:

(38) O_{ScalAlts} (Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.)
→ ¬ Alice has 4 / more than 5 / less than 1 / at most 1 / at least 5 diamonds.

implicatures

* In the scope of a universal operator:

(39) O_{ScalAlts} (Alice is required to have 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds.)
→ ¬ Alice is required to have 4 / more than 4 / less than 2 / at most 2 / at least 4 diamonds.

implicatures

✓ Implicatures from scalar alternatives

considering only alternatives that do not lead to the problematic 'exactly' meanings

* In the antecedent of a conditional:

(40) O_{ScalAlts} (If Alice has 3 / more than 3 / less than 3 / at most 3 / at least 3 diamonds she wins.)
→¬ If Alice has 2 / more than 2 / less than 4 / at most 4 / at least 2 diamonds she wins.

implicatures

★ In the scope of negation:

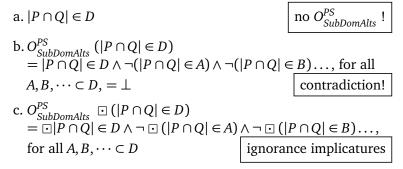
(41) O_{ScalAlts} (Alice doesn't have 3 / more than 3 / less than 3 / *at most 3 / *at least 3 diamonds.)
→ ¬ Alice doesn't have 1 / more than 1 / less than 5 / at most 5 / at least 1 diamonds.

implicatures

✓ Implicatures from subdomain alternatives

* Unembedded:

(42) Alice has more/less than 3 / at most/least 3 diamonds.



* Ignorance optional for CMs, obligatory for SMs.

✓ Implicatures from subdomain alternatives

clash with 'exactly'-inducing implicature from scalar alternatives!

(43) Alice has more than 2 / at least 3 diamonds.

$$O_{SubDomAlts}^{PS} \boxdot O_{ScalAlts} (|P \cap Q| \in \{3, 4, ...\})$$

$$= \bigcirc O_{ScalAlts} (|P \cap Q| \in \{3, 4, \dots\}) \land \neg \boxdot (|P \cap Q| \in \{3\}) \land \neg \boxdot (|P \cap Q| \in \{4, 7\}) \land \neg \dots$$

$$= \underbrace{\bigcirc (|P \cap Q| \in \{3\})}_{\neg \boxdot (|P \cap Q| \in \{4,7\})} \land \underbrace{\neg \boxdot (|P \cap Q| \in \{3\})}_{\land \neg \ldots} \land$$

 $= \bot$

- * Prune offending SubDomAlts? That would violate $O_{SubDomAlts}^{PS}$, so no. X
- ★ Prune offending ScalAlt?

✓ Implicatures from subdomain alternatives

* In the scope of a universal operator:

(44) Alice is required to have more/less than 3 / at most/least 3 diamonds.

a.
$$\Box(|P \cap Q| \in D)$$
no $O_{SubDomAlts}^{PS}$!b. $\Box O_{SubDomAlts}^{PS}$ ($|P \cap Q| \in D$)contradiction!c. $O_{SubDomAlts}^{PS}$ ($\Box(|P \cap Q| \in D)$)non-ignorance implicaturesd. $O_{SubDomAlts}^{PS}$ ($\Box(|P \cap \Box Q| \in D)$)contradiction!e. $O_{SubDomAlts}^{PS}$ ($\Box(|P \cap \Box Q| \in D)$)ignorance implicatures

 $\star\,$ Ignorance optional for both CMs and SMs.

-

Implicatures from subdomain alternatives

★ In the scope of negation:

 $a - (|D \cap O| \subset D)$

(45) Alice doesn't have more/less than 3 / *at most/least 3 diamonds.

b.
$$\neg O_{SubDomAlts}^{PS}$$
 $(|P \cap Q| \in D)$
c. $O_{SubDomAlts}^{PS} \neg (|P \cap Q| \in D)$
 $= \neg (|P \cap Q| \in D)$

d. $O_{SubDomAlts}^{PS} \boxdot \neg (|P \cap Q| \in D)$

 $= \Box \neg (|P \cap O| \in D)$

contradiction!

no proper strengthening!

no proper strengthening!

* No ignorance implicatures sanctioned formally.

Acceptability in DE environments \checkmark

- * In the scope of negation:
- (46) Alice doesn't have more/less than three / *at most/least three diamonds.

a.
$$\neg(|P \cap Q| \in D\})$$
no $O_{SubDomAlts}^{PS}$!b. $\neg O_{SubDomAlts}^{PS}$ ($|P \cap Q| \in D$)contradiction!c. $O_{SubDomAlts}^{PS} \neg(|P \cap Q| \in D)$ no proper strengthening!d. $O_{SubDomAlts}^{PS}$ $\boxdot \neg(|P \cap Q| \in D)$ no proper strengthening!

 \star CMs can be parsed as in (a). No parsing option for SMs.

SubDomAlts

✓ Acceptability in DE environments

- * In the antecedent of a conditional / restriction of a universal:
- (47) Everyone who has more/less than 3 / at most/least 3 diamonds wins.

 $\begin{array}{cccc} \forall x [\# \text{ di } x \text{ has } \in D \to \dots] & \wedge & \exists x [\# \text{ of di } x \text{ has } \in D] \\ & & & & & \\ & & & & \\ \forall x [\# \text{ di } x \text{ has } \in D' \to \dots] & \wedge & \exists x [\# \text{ of di } x \text{ has } \in D'] \end{array}$

- * SubDomAlts not entailed, so they must be false.
- ★ However, negating them leads to contradiction.
- ★ We can rescue the parse with ⊡.
- * Ignorance implicatures about the presupposition: The speaker is sure that here is someone such that the # of diamonds they have is in D, but not sure about any subsets of D.

Taking stock

entailments	scalar implicatures	ignorance	accept in DE env
\checkmark	1	1	1

Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion

Compositionality

Lexical entries for the numeral, much/little, [comp], and [sup] that

★ give us the right truth conditions and a natural way to derive the number, type, and status of the alternatives in each case;

* link up naturally to meanings elsewhere;

★ ensure that the resulting bare or modified numeral DPs will pose no further compositional challenges, as they are generalized quantifiers.

Predicative uses

(48) The three / more/less than three / at most/least three NP(49) We are three / more/less than three / at most/least three.(50) Plant a tree every three houses.

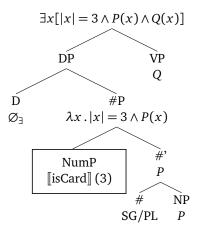
(51) If two relatives of mine die, I'll be rich.

* Use [Partee, 1987]'s BE to typeshift the generalized quantifier meanings into predicative meanings:

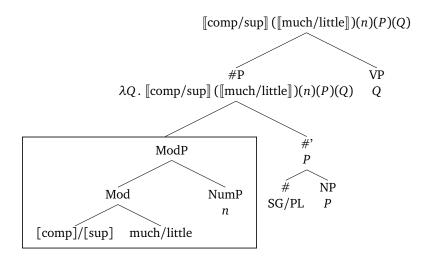
(52)
$$\llbracket BE \rrbracket = \lambda Q_{\langle \alpha t, t \rangle} \cdot \lambda x_{\alpha} \cdot Q(\lambda y_{\alpha} \cdot y = x)$$

(53) [BE]] ([[at most three students]]) $= [\lambda Q_{\langle et,t \rangle} \cdot \lambda x_e \cdot Q(\lambda y_e \cdot y = x)](\lambda Q_{\langle e,t \rangle} \cdot |P \cap Q| \in [[much]] (3))$ $= \lambda x_e \cdot [\lambda Q_{\langle e,t \rangle} \cdot |P \cap Q| \in [[much]] (3)](\lambda y_e \cdot y = x)$ $= \lambda x_e \cdot |P \cap \lambda y_e \cdot y = x| \in [[much]] (3)$

Constituent structure



Constituent structure



Outline

The classic GQT theory of BNs, CMs, and SMs

An extent based GQT-style unified implicature account of BNs, CMs, and SMs

Additional results

Conclusion

Conclusion

* A unified account of bare and modified numerals that builds conservatively on the original GQT account.

* Derives their patterns w.r.t. entailments, scalar implicatures, ignorance, and acceptability in DE environments from their morphological pieces.

* The account is more comprehensive, has better empirical coverage, and is less stipulative than previous accounts.

References I

Barwise, J. and Cooper, R. (1981).

Generalized quantifiers and natural language. *Linguistics and Philosophy*, 4(2):159–219.

van Benthem, J. (1986). Essays in logical semantics. Springer.

Buccola, B. and Spector, B. (2016). Modified numerals and maximality. *Linguistics and Philosophy*, 39(3):151–199.

Chierchia, G. (2013).

Logic in grammar: Polarity, free choice, and intervention. Oxford University Press, Oxford, UK.

Cohen, A. and Krifka, M. (2014). Superlative quantifiers and meta-speech acts. *Linguistics and Philosophy*, 37(1):41–90.

Coppock, E. and Brochhagen, T. (2013). Raising and resolving issues with scalar modifiers. *Semantics & Pragmatics*, 6(3):1–57.

References II

Cummins, C., Sauerland, U., and Solt, S. (2012). Granularity and scalar implicature in numerical expressions. *Linguistics and Philosophy*, pages 1–35.

Fox, D. and Hackl, M. (2006). The universal density of measurement. *Linguistics and Philosophy*, 29(5):537–586.

Gajewski, J. (2010). Superlatives, NPIs, and most. Journal of Semantics, (27):125–137.

Geurts, B. and Nouwen, R. (2007). *At least* et al.: The semantics of scalar modifiers. *Language*, pages 533–559.

Hackl, M. (2009).

On the grammar and processing of proportional quantifiers: *most* versus more than half.

Natural Language Semantics, 17(1):63-98.

Heim, I. (2007).

Little.

In Proceedings of SALT 16.

References III

Horn, L. R. (1972).

On the semantic properties of logical operators in English. University Linguistics Club.

Kennedy, C. (1997).

Projecting the adjective. The syntax and semantics of gradability and comparison. PhD thesis, University of California Santa Cruz.

Kennedy, C. (2015).

A "de-Fregean" semantics (and neo-Gricean pragmatics) for modified and unmodified numerals.

Semantics & Pragmatics, 8(10):1-44.

Krifka, M. (1999).

At least some determiners aren't determiners.

The semantics/pragmatics interface from different points of view, 1:257–291.

Link, G. (1983).

The logical analysis of plurals and mass terms, a lattice-theoretical approach', in r. b[~] uerle et al.(eds), meaning, use and interpretation of language, berlin, new york.

Mayr, C. (2013).

Implicatures of modified numerals. pages 139–171.

References IV

Mendia, J. A. (2015).

Conveying ignorance: Ignorance inferences with superlative numeral modifiers. *Proceedings of ConSOLE XXIII*, 150:174.

Mihoc, T. and Davidson, K. (2017).

Testing a PPI analysis of superlative-modified numerals. Talk at XPrag 7, University of Cologne, June 21-23, 2017.

Nilsen, Ø. (2007).

At least – Free choice and lowest utility. In ESSLLI Workshop on Quantifier Modification.

Nouwen, R. (2010). Two kinds of modified numerals. Semantics & Pragmatics, 3(3):1–41.

Nouwen, R. (2015). Modified numerals: The epistemic effect.

Epistemic Indefinites, pages 244-266.

Partee, B. (1987).

Noun phrase interpretation and type-shifting principles. Studies in discourse representation theory and the theory of generalized quantifiers, 8:115–143.

References V

Seuren, P. A. (1984).

The comparative revisited. Journal of Semantics, 3(1):109–141.

Spector, B. (2013).

Bare numerals and scalar implicatures.

Language and Linguistics Compass, 7(5):273-294.

Spector, B. (2014).

Global positive polarity items and obligatory exhaustivity. *Semantics & Pragmatics*, 7(11):1–61.

Spector, B. (2015).

Why are class B modifiers global PPIs?

Handout for talk at Workshop on Negation and Polarity, February 8-10, 2015, The Hebrew University of Jerusalem.

Von Stechow, A. (2005). Temporal comparatives: Früher 'earlier' / später 'later'. Handout.