The alternatives of bare and modified numerals

3 (BNS) more/less than 3 (CMNs) (ScalAlts), (SubDomAlts) at most/least 3 (SMNs)

(ScalAlts) (ScalAlts), SubDomAlts

Teodora Mihoc (Harvard University) (tmihoc@fas.harvard.edu)

@ RALFe, Université Paris 8/CNRS, Dec 6-7, 2018

Preview

- * 3, more/less than 3, and at least/most 3 differ w.r.t. (at least)
 - entailments,
 - scalar implicatures,
 - ignorance, and
 - acceptability in downward-entailing environments.
- ★ Many theories have been proposed to capture these differences.
- ★ Lately a move towards alternative-based theories.
- ★ Promising results, but also empirical and conceptual issues.
- ★ I will propose a theory that overcomes these issues.

Outline

Empirical patterns, existing proposals, issues

Entailments Scalar implicatures Ignorance Acceptability in DE environments

Proposal

Bonus results

Conclusion and open issues

Appendix

Entailments

- * 3 / more than 3 / at least 3 carry lower-bounding entailments.
- (1) a. Alice has 3 diamonds.
 b. → not 2 or less
 c. Alice has 3 diamonds, # if not less.
- ★ less than 3 / at most 3 carry upper-bounding entailments.
- (2) a. Alice has less than 3 diamonds.
 - b. --> not 3 or more
 - c. Alice has less than 3 diamonds, #if not more.

★ Existing proposals: Multiple possible solutions, typically not compositional down to the smallest pieces.

* We want one that gets these entailments with ease and also minimally uncovers the uniform contribution of the numeral, *much/little*, or [-er]/[at -est] in producing these entailments.

Scalar implicatures I

- ★ BNs also carry upper-bounding scalar implicatures. [Horn, 1972]
- (3) a. Alice has 3 diamonds.
 b. → not 4 yields 'exactly 3' meaning ✓
 c. Alice has 3 diamonds, if not 4.

- ★ CMNs and SMNs don't seem to. [Krifka, 1999]
- (4) a. Alice has more than 3 diamonds.
 b. ৵ not more than 4 yields 'exactly 4' meaning X

★ Existing proposals: No scalar implicatures for CMNs and SMNs.

Scalar implicatures II

- ★ But in certain contexts all give rise to scalar implicatures!
- (5) a. If you have at least 3 diamonds, you win.b. → not if at least 2

- ★ And in some none do:
- (6) a. Alice doesn't have 3 diamonds.
 b. ≁ not not 2 yields 'exactly 2' meaning X

- * We want scalar implicatures for all!
- \star We need a separate mechanism to rule out certain implicatures.

Scalar implicatures III

 ★ With coarser granularity, CMNs and SMNs can give rise scalar implicatures too. [Spector, 2014, Cummins et al., 2012, Enguehard, 2018]

- (7) Grades are given based on the number of problems solved. People who solve more than 5 problems but fewer than 9 problems get a B, and people who solve 9 problems or more get an A.
 a. John solved more than 5 problems.
 b. w not more than 9 (he gets a B) example from [Spector, 2014]
- ★ That is true of BNs in the problem cases also.
- (8) a. Alice doesn't have 3 diamonds.
 b. ≁ not not 1 (she does have some)

Ignorance I

- ★ SMNs give rise to strong speaker ignorance inferences.
- (9) I have 3 / more than 2 / ??at least 3 children.

★ Existing proposals: e.g., [Büring, 2008, Kennedy, 2015, Spector, 2015]

- SMNs are underlyingly disjunctive (at least 3 = exactly 3 or more than 3) and have domain alternatives (the individual disjuncts).

- Ignorance inferences are implicatures from these alternatives.
- Nothing of this sort is assumed / derived for CMNs.

Ignorance II

- CMNs give rise to ignorance inferences too! [Cremers et al., 2017]
 (10) [A:] How many diamonds does Alice have? [B:] More than 3.
- ★ Unlike BNs and like SMNs, CMNs are compatible with ignorance:
- (11) I don't know how many diamonds Alice has, but she has # 3 / more than 3 / at least 3.
- ★ Unlike CMNs, SMNs are incompatible with exact knowledge.

[Nouwen, 2015]

(12) There were exactly 62 mistakes in the manuscript, so that's more than 50 / # at least 50.

- * We want ignorance implicatures for CMNs too!
- \star We want ignorance to be weaker for CMNs than for SMNs.

Acceptability in DE environments I

★ SMNs are bad under negation.

[Nilsen, 2007, Geurts and Nouwen, 2007, Cohen and Krifka, 2014, Spector, 2015]

(13) Alice doesn't have *at least three / *at most three diamonds. \rightarrow Alice has 2 or less / 4 or more diamonds.

 ★ Existing proposals: The domain alternatives of SMNs are obligatory and must lead to a stronger meaning, but that cannot happen in a DE environment like negation. [Spector, 2015]

Acceptability in DE environments II

★ SMNs are okay in the antecedent of a conditional or the restriction of a universal!

[Geurts and Nouwen, 2007, Cohen and Krifka, 2014, Spector, 2015]

(14) If Alice has at least 3 diamonds, she wins.

(15) Everyone who has at least 3 diamonds wins.

★ We want a solution that can distinguish between various types of DE environments!

Summary and preview of proposal

- BNs, CMNs, and SMNs are non-uniform w.r.t. Entailments Scalar implicatures Ignorance Acceptability in DE environments
- ★ The existing alternative-based proposals are promising, but still:
 - they take into evidence an incomplete dataset;
 - they make non-uniform stipulations about the alternatives;
 - they fail to capture all the patterns we saw.
- \star In this talk:
 - I take into evidence a revised and extended dataset;

- I derive the alternatives of BNs, CMNs, and SMNs in a uniform way from their truth conditions;

- I show how, with certain general assumptions about implicature calculation, we get all the patterns we saw.

Outline

Empirical patterns, existing proposals, issues

Entailments Scalar implicatures Ignorance Acceptability in DE environments

Proposal

Bonus results

Conclusion and open issues

Appendix

Proposal: Truth conditions and presupposition

the numeral	[Link, 1983, Buccola and Spector, 2016]
$\llbracket n \rrbracket = n$	$\llbracket is_{Card} \rrbracket (n) = \lambda x_e . x = n$
much/little	[Seuren, 1984, Kennedy, 1997]
$\llbracket \text{much} \rrbracket (n) = \lambda d . d \leq n$	$\llbracket \text{little} \rrbracket (n) = \lambda d . d \ge n$
truth conditions 🕕 [Krifka, 1999, Von Stechow, 2005, Heim, 2007, Hackl, 2009]	
(∃ (n P))(Q) [comp](much/little)(n)(P)(Q) [at-sup](much/little)(n)(P)(Q)	$= 1 \text{ iff } \exists x[x = n \land P(x) \land Q(x)]$ = 1 iff $ P \cap Q \in \overline{[[much/little]](n)}$ = 1 iff $ P \cap Q \in [[much/little]](n)$
the presupposition of at-sup	[Hackl, 2009, Gajewski, 2010]

 $| [[much/little]](n)| \ge 2$

✓ Entailments

(16)
$$3 P Q$$
:
 $\exists x[|x| = 3 \land P(x) \land Q(x)]$ (1.b.)

(17) more than 3 P Q:

$$|P \cap Q| \in \overline{[[much]]}(3) \Leftrightarrow |P \cap Q| \in \{4, 5, ...\}$$
 (l.b.)

(18) less than
$$3 P Q$$
:
 $|P \cap Q| \in \overline{[[little]]}(3) \Leftrightarrow |P \cap Q| \in \{\dots, 0, 1, 2\}$ (u.b.)

(19) at most 3 P Q:

$$|P \cap Q| \in \llbracket \text{much} \rrbracket (3) \Leftrightarrow |P \cap Q| \in \{\dots, 0, 1, 2, 3\}$$
(u.b.)

(20) at least 3 P Q:

$$|P \cap Q| \in [[little]] (3) \Leftrightarrow |P \cap Q| \in \{3, 4, ...\}$$
 (l.b.)

Proposal: Alternatives

Scalar alternatives: Replace the *n*-domain with an *m*-domain.

BNs: $\{\exists x[|x| = m \land P(x) \land Q(x)] : m \in S\}$

CMs: { $|P \cap Q| \in [[much/little]](m) : m \in S$ }

SMs: { $|P \cap Q| \in [[much/little]](m): m \in S$ }

Subdomain alternatives: Replace the *n*-domain with its subsets.

BNs: NA (the numeral argument is just a degree) CMs: $\{|P \cap Q| \in A : A \subseteq \overline{[much/little]](n)}\}$ SMs: $\{|P \cap Q| \in A : A \subseteq [[much/little]](n)\}$ active by presup!

obligatory exhaustification relative to SubDomAlts

Examples

(21) BNs: 3 P Q

a. Truth conditions: $\exists x[|x| = 3 \land P(x) \land Q(x)]$ b. ScalAlts: {..., $\exists x[|x| = 2...], \exists x[|x| = 4..., ...}$ c. SubDomAlts: NA

(22) CMNs: e.g., more than 3 P Q

a. Truth conditions: $|P \cap Q| \in \llbracket \text{much} \rrbracket$ (3) b. ScalAlts: {..., $|P \cap Q| \in \llbracket \text{much} \rrbracket$ (2), $|P \cap Q| \in \llbracket \text{much} \rrbracket$ (4), ...}

c. SubDomAlts: $\{|P \cap Q| \in A : A \subseteq [[much]] (3)\}$

(23) SMNs: e.g., at least 3 P Q

a. Truth conditions: $|P \cap Q| \in [[little]]$ (3)b. ScalAlts: {..., $|P \cap Q| \in [[little]]$ (2), $|P \cap Q| \in [[little]]$ (4), ...}c. SubDomAlts: { $|P \cap Q| \in A : A \subseteq [[little]]$ (3)}

7/38

Proposal: Implicature calculation system [Chierchia, 2013]

to exhaustify the scalar alternatives of BNs, CMNs, and SMNs

$$(24) \llbracket O_{ALT}(p) \rrbracket = p \land \forall q \in ALT \llbracket q \to p \subseteq q \rrbracket$$

^S to exhaustify the subdomain alternatives of CMNs and SMNs

- ★ A version of *O* that
 - takes into account presuppositions:

(25)
$$\left[\!\left[O_{ALT}^{S}(p)\right]\!\right] = \pi(p) \land \forall q \in ALT \left[\pi(q) \to \pi(p) \subseteq \pi(q)\right],$$

- requires a properly stronger result:

(26) $[\![O_{ALT}^{PS}(p)]\!]$ is defined iff $O_{ALT}^{S}(p) \subset p$. Whenever defined, $[\![O_{ALT}^{PS}(p)]\!] = [\![O_{ALT}^{S}(p)]\!]$.

last resort, silent, matrix-level, universal doxastic modal

Implicatures from ScalAlts: Scalar implicatures

(27) Alice has 3 diamonds.

a.
$$O_{ScalAlts} (\exists x [|x| = 3 \land P(x) \land Q(x)] \land)$$

= $\exists x [|x| = 3 \land P(x) \land Q(x)] \land$
 $\neg \exists x [|x| = 4 \land P(x) \land Q(x)] \land ...$

(28) Alice has at least 3 diamonds.

a.
$$O_{ScalAlts} (|P \cap Q|) \in [[little]] (3))$$

= $|P \cap Q| \in [[little]] (3) \land$
 $\neg |P \cap Q| \in [[little]] (5) \land ...$

not 4 🗸

(29) If Alice has more than 3 diamonds, she wins.

a. $O_{ScalAlts} ([|P \cap Q|] \in \overline{[much]](3)} \rightarrow win]$ = $[|P \cap Q| \in \overline{[much]](3)} \rightarrow win] \land$ $\neg [|P \cap Q| \in \overline{[much]](2)} \rightarrow win] \land \dots$ not if more than $2\checkmark$

- ★ And so on. We can derive all the attested scalar implicatures.
- ★ Scalar implicatures may be restricted by granularity.
- * In unembeded contexts this effect is compounded by ignorance. 19/38

Implicatures from SubDomAlts: Ignorance

(30) Alice has more/less than 3 / at most/least 3 diamonds.

a.
$$O_{SubDomAlts}^{PS}$$
 $(|P \cap Q|) \in D$)
 $= |P \cap Q| \in D \land$
 $\neg |P \cap Q| \in A \land$
 $\neg |P \cap Q| \in B \land \dots$, for all $A, B, \dots \subset D$, $= \bot$
contradiction \checkmark
b. $O_{SubDomAlts}^{PS}$ $(\boxdot |P \cap Q| \in D)$
 $= \boxdot |P \cap Q| \in D \land$
 $\neg \boxdot |P \cap Q| \in B \land \dots$, for all $A, B, \dots \subset D$ ignorance \checkmark

- The only consistent O^{PS}_{SubDomAlts} parse yields ignorance.
 SMNs can only have an O^{PS}_{SubDomAlts} parse, so *(ignorance)
 CMNs can also have a parse without O^{PS}_{SubDomAlts}, so (ignorance).

Scalar implicatures vs. ignorance implicatures

(31) Alice has more than 2 /at least 3 diamonds. $O_{SubDomAlts}^{PS} \boxdot O_{ScalAlts} (|P \cap Q|) \in \{3, 4, \ldots\})$ $= \boxdot O_{ScalAlts} (|P \cap Q| \in \{3, 4, \dots\}) \land$ $\neg \boxdot (|P \cap Q| \in \{3\}) \land$ $\neg \boxdot (|P \cap Q| \in \{4, 7\}) \land \ldots$ $= \boxdot (|P \cap Q| \in \{3, 4, \ldots\} \land \neg |P \cap Q| \in \{4, \ldots\}) \land$ $\neg \boxdot (|P \cap Q| \in \{3\}) \land$ $\neg \boxdot (|P \cap Q| \in \{4, 7\}) \land \ldots$ $= \boxdot(|P \cap Q| \in \{3\}) \land \neg \boxdot (|P \cap Q| \in \{3\}) \land$ $\neg \boxdot (|P \cap O| \in \{4, 7\}) \land \ldots = \bot$ contradiction X PS

- * Prune offending SubDomAlts? That would violate $O_{SubDomAlts}^{[10]}$.
- ⋆ Prune offending ScalAlt? ✓

Implicatures from SubDomAlts: Negation

(32) Alice doesn't have more/less than three / *at most/least three diamonds.

a.
$$\neg O_{SubDomAlts}^{PS} (|P \cap Q| \in D)$$

b. $O_{SubDomAlts}^{PS} (\neg |P \cap Q| \in D)$
c. $O_{SubDomAlts}^{PS} (\boxdot \neg |P \cap Q| \in D)$

- * All $O_{SubDomAlts}^{PS}$ parses fail.
- SMNs cannot have a non-O^{PS}_{SubDomAlts} parse, so bad.
 CMNs can be parsed without O^{PS}_{SubDomAlts}, so okay.

Implicatures from SubDomAlts: AntCond/RestUniv

(33) $O_{SubDomAlts}^{PS}$ (Everyone who has at least 3 diamonds wins.)

Prejacent: $\forall x [\# \text{ di } x \text{ has } \in D \to \dots] \land \exists x [\# \text{ of di } x \text{ has } \in D]$ $\downarrow \qquad \qquad \uparrow$ SubDomAlt: $\forall x [\# \text{ di } x \text{ has } \in D' \to \dots] \land \exists x [\# \text{ of di } x \text{ has } \in D']$

- ★ SubDomAlts not entailed, so they must be false.
- ★ However, negating them leads to contradiction.
- ★ We can rescue the parse with ⊡:

 $(34) \boxdot \exists x [\# \text{ of di } x \text{ has } \in D] \land \neg \boxdot \exists x [\# \text{ of di } x \text{ has } \in D']$ $PS \text{ satisfied } \checkmark$

* Thus there *is* a consistent $O_{SubDomAlts}^{PS}$ parse for SMNs, which is why they are felicitous in this type of DE environments.

Outline

Empirical patterns, existing proposals, issues

Entailments Scalar implicatures Ignorance Acceptability in DE environments

Proposal

Bonus results

Conclusion and open issues

Appendix

The existential implicature of at most

[Alrenga, 2016]

```
(35) LeBron scored at most 20 points (and it's even possible that
he didn't score any points at all).

O_{ScalAlts} (|P \cap Q| \in [[much]] (20))

= |P \cap Q| \in [[much]] (20) \land

\neg |P \cap Q| \in [[much]] (18) \land

\neg |P \cap Q| \in [[much]] (17) \land

...

\neg |P \cap Q| \in [[much]] (0)

existential implicature \checkmark
```

★ Lower-bounding inference is a scalar implicature, which is why it is defeasible.

★ The same can be observed for *less than*.

 $\star\,$ Both follow if we assume CMNs and SMNs have scalar alternatives.

The 'not possible more' reading of *at most* under \Diamond

(36) a. You are allowed to drink at most one beer. b. $O_{ScalAlts} (O_{SubDomAlts}^{PS} (\diamond | P \cap Q | \in \llbracket \text{much} \rrbracket (1)))$ c. Prejacent: $O_{ExhSubDomAlts}^{PS} (\diamond | P \cap Q | \in \llbracket \text{much} \rrbracket (1))$ d. ScalAlts: $O_{ExhSubDomAlts}^{PS} (\diamond | P \cap Q | \in \llbracket \text{much} \rrbracket (m))$ e. Outcome: $\begin{array}{l} O_{ScalAlts} \left(O_{ExhSubDomAlts}^{PS} \left(\Diamond | P \cap Q | \in \llbracket \text{much} \rrbracket \left(1 \right) \right) \right) \\ = O_{ExhSubDomAlts}^{PS} \left(\Diamond | P \cap Q | \in \llbracket \text{much} \rrbracket \left(1 \right) \right) \land \\ \neg O_{SubDomAlts}^{PS} \left(\Diamond | P \cap Q | \in \llbracket \text{much} \rrbracket \left(2 \right) \right) \end{array}$ $= \Diamond |P \cap Q| \in \{0\} \land \Diamond |P \cap Q| \in \{1\} \land$ $\neg(\Diamond | P \cap Q| \in \{0\} \land \Diamond | P \cap Q| \in \{1\} \land \Diamond | P \cap Q| \in \{2\})$ not possible more \checkmark

★ This follows from a system where $O_{SubDomAlts}$ can apply to pre-exhaustified alternatives, where $O_{SubDomAlts}$ and $O_{ScalAlts}$ can be manipulated separately, and where $O_{SubDomAlts}$ can be part of the prejacent and the alternatives operated on by $O_{ScalAlts}$.

Outline

Empirical patterns, existing proposals, issues

Entailments Scalar implicatures Ignorance Acceptability in DE environments

Proposal

Bonus results

Conclusion and open issues

Appendix

Conclusion

★ A unified account of bare, comparative-modified, and superlative-modified numerals that

- captures more patterns than previous accounts; and

- derives them from

- truth conditions and alternatives obtained in a uniform way from the morphological pieces of BNs, CMNs, and SMNs, and

- general implicature calculation mechanisms, using general recipes for deriving scalar implicatures, ignorance effects, polarity sensitivity, or free choice behavior.

Open issues

★ How does superlativity in SMNs (at-sup) connect to superlativity in adjectives (sup)?

★ Why Proper Strengthening?

(At present it is a stipulation. We could replace it with a ban on vacuous exhaustification but I think in the general case that might be too strong. It however seems to be a necessary general assumption for items with a positive polarity behavior such as SMNs - [Spector, 2014, Nicolae, 2017]. Parametric choice? Is there any evidence of SMNs that are not PPIs?)

Outline

Empirical patterns, existing proposals, issues

Entailments Scalar implicatures Ignorance Acceptability in DE environments

Proposal

Bonus results

Conclusion and open issues

Appendix

Truth conditions, BNs

(37) 3 people quit.

31/38

Truth conditions, CMNs

(38) More/less than 3 people quit.

Truth conditions, SMNs

(39) At most/least 3 people quit.

References I

Alrenga, P. (2016).

At least and at most: Scalar focus operators in context. Manuscript.

van Benthem, J. (1986). Essays in logical semantics.

Springer.

Buccola, B. and Spector, B. (2016). Modified numerals and maximality. *Linguistics and Philosophy*, 39(3):151–199.

Büring, D. (2008). **The least at least can do.** In Proceedings of the 26th West Coast Conference on Formal Linguistics, pages 114–120.

Chierchia, G. (2013).

Logic in grammar: Polarity, free choice, and intervention. Oxford University Press, Oxford, UK.

Cohen, A. and Krifka, M. (2014). Superlative quantifiers and meta-speech acts. *Linguistics and Philosophy*, 37(1):41–90.

References II

Cremers, A., Coppock, L., Dotlacil, J., and Roelofsen, F. (2017). Modified numerals: Two routes to ignorance. *Manuscript, ILLC, University of Amsterdam.*

Cummins, C., Sauerland, U., and Solt, S. (2012). Granularity and scalar implicature in numerical expressions. *Linguistics and Philosophy*, pages 1–35.

Enguehard, É. (2018).

Comparative numerals revisited: scalar implicatures, granularity and blindness to context.

Talk at SALT 2018, MIT.

Gajewski, J. (2010).

Superlatives, NPIs, and most. Journal of Semantics, (27):125–137.

Geurts, B. and Nouwen, R. (2007).

At least et al.: The semantics of scalar modifiers.

Language, pages 533-559.

Hackl, M. (2009).

On the grammar and processing of proportional quantifiers: *most* versus more than half.

Natural Language Semantics, 17(1):63-98.

References III

Heim, I. (2007).

Little. In Proceedings of SALT 16.

Horn, L. R. (1972).

On the semantic properties of logical operators in English. University Linguistics Club.

Kennedy, C. (1997).

Projecting the adjective. The syntax and semantics of gradability and comparison. PhD thesis, University of California Santa Cruz.

Kennedy, C. (2015).

A "de-Fregean" semantics (and neo-Gricean pragmatics) for modified and unmodified numerals.

Semantics & Pragmatics, 8(10):1-44.

Krifka, M. (1999).

At least some determiners aren't determiners.

The semantics/pragmatics interface from different points of view, 1:257-291.

Link, G. (1983).

The logical analysis of plurals and mass terms, a lattice-theoretical approach', in r. b[~] uerle et al.(eds), meaning, use and interpretation of language, berlin, new york.

References IV

Nicolae, A. C. (2017).

Deriving the positive polarity behavior of plain disjunction. *Semantics & Pragmatics*, 10.

Nilsen, Ø. (2007).

At least – Free choice and lowest utility. In *ESSLLI Workshop on Quantifier Modification*.

Nouwen, R. (2015). Modified numerals: The epistemic effect. *Epistemic Indefinites*, pages 244–266.

Seuren, P. A. (1984). The comparative revisited. Journal of Semantics, 3(1):109–141.

Spector, B. (2014).

Global positive polarity items and obligatory exhaustivity. *Semantics & Pragmatics*, 7(11):1–61.

Spector, B. (2015).

Why are class B modifiers global PPIs?

Handout for talk at Workshop on Negation and Polarity, February 8-10, 2015, The Hebrew University of Jerusalem.

References V

Von Stechow, A. (2005).

Temporal comparatives: Früher 'earlier' / später 'later'. Handout.