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Preview

? 3, more/less than 3, and at least/most 3 differ w.r.t. (at least)

- entailments,
- scalar implicatures,
- ignorance, and
- acceptability in downward-entailing environments.

? Many theories have been proposed to capture these differences.

? Lately a move towards alternative-based theories.

? Promising results, but also empirical and conceptual issues.

? I will propose a theory that overcomes these issues.
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Entailments [Horn, 1972, van Benthem, 1986]

? 3 / more than 3 / at least 3 carry lower-bounding entailments.

(1) a. Alice has 3 diamonds.
b.  not 2 or less
c. Alice has 3 diamonds, # if not less.

? less than 3 / at most 3 carry upper-bounding entailments.

(2) a. Alice has less than 3 diamonds.
b.  not 3 or more
c. Alice has less than 3 diamonds, #if not more.

? Existing proposals: Multiple possible solutions, typically not
compositional down to the smallest pieces.
? We want one that gets these entailments with ease and also
minimally uncovers the uniform contribution of the numeral,
much/little, or [-er]/[at -est] in producing these entailments.
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Scalar implicatures I

? BNs also carry upper-bounding scalar implicatures. [Horn, 1972]

(3) a. Alice has 3 diamonds.
b.  not 4 yields ‘exactly 3’ meaning 3

c. Alice has 3 diamonds, if not 4.

? CMNs and SMNs don’t seem to. [Krifka, 1999]

(4) a. Alice has more than 3 diamonds.
b. 6  not more than 4 yields ‘exactly 4’ meaning 7

? Existing proposals: No scalar implicatures for CMNs and SMNs.
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Scalar implicatures II

? But in certain contexts all give rise to scalar implicatures!

(5) a. If you have at least 3 diamonds, you win.
b.  not if at least 2

? And in some none do:

(6) a. Alice doesn’t have 3 diamonds.
b. 6  not not 2 yields ‘exactly 2’ meaning 7

? We want scalar implicatures for all!
? We need a separate mechanism to rule out certain implicatures.
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Scalar implicatures III

? With coarser granularity, CMNs and SMNs can give rise scalar
implicatures too. [Spector, 2014, Cummins et al., 2012, Enguehard, 2018]

(7) Grades are given based on the number of problems solved. People
who solve more than 5 problems but fewer than 9 problems get
a B, and people who solve 9 problems or more get an A.

a. John solved more than 5 problems.
b.  not more than 9 (he gets a B) example from [Spector, 2014]

? That is true of BNs in the problem cases also.

(8) a. Alice doesn’t have 3 diamonds.
b. 6  not not 1 (she does have some)
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Ignorance I

? SMNs give rise to strong speaker ignorance inferences.

(9) I have 3 / more than 2 / ??at least 3 children.

? Existing proposals: e.g., [Büring, 2008, Kennedy, 2015, Spector, 2015]

- SMNs are underlyingly disjunctive (at least 3 = exactly 3 or
more than 3) and have domain alternatives (the individual
disjuncts).

- Ignorance inferences are implicatures from these alternatives.
- Nothing of this sort is assumed / derived for CMNs.
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Ignorance II

? CMNs give rise to ignorance inferences too! [Cremers et al., 2017]

(10) [A:] How many diamonds does Alice have? [B:] More than 3.

? Unlike BNs and like SMNs, CMNs are compatible with ignorance:

(11) I don’t know how many diamonds Alice has, but she has # 3 /
more than 3 / at least 3.

? Unlike CMNs, SMNs are incompatible with exact knowledge.
[Nouwen, 2015]

(12) There were exactly 62 mistakes in the manuscript, so that’s
more than 50 / # at least 50.

? We want ignorance implicatures for CMNs too!
? We want ignorance to be weaker for CMNs than for SMNs.
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Acceptability in DE environments I

? SMNs are bad under negation.
[Nilsen, 2007, Geurts and Nouwen, 2007, Cohen and Krifka, 2014, Spector, 2015]

(13) Alice doesn’t have *at least three / *at most three diamonds.
→ Alice has 2 or less / 4 or more diamonds. 7

? Existing proposals: The domain alternatives of SMNs are
obligatory and must lead to a stronger meaning, but that cannot
happen in a DE environment like negation. [Spector, 2015]
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Acceptability in DE environments II

? SMNs are okay in the antecedent of a conditional or the
restriction of a universal!

[Geurts and Nouwen, 2007, Cohen and Krifka, 2014, Spector, 2015]

(14) If Alice has at least 3 diamonds, she wins.

(15) Everyone who has at least 3 diamonds wins.

? We want a solution that can distinguish between various types of
DE environments!
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Summary and preview of proposal

? BNs, CMNs, and SMNs are non-uniform w.r.t.
Entailments
Scalar implicatures
Ignorance
Acceptability in DE environments

? The existing alternative-based proposals are promising, but still:
- they take into evidence an incomplete dataset;
- they make non-uniform stipulations about the alternatives;
- they fail to capture all the patterns we saw.

? In this talk:
- I take into evidence a revised and extended dataset;
- I derive the alternatives of BNs, CMNs, and SMNs in a uniform

way from their truth conditions;
- I show how, with certain general assumptions about

implicature calculation, we get all the patterns we saw.
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Proposal: Truth conditions and presupposition

the numeral || [Link, 1983, Buccola and Spector, 2016]

JnK = n JisCardK (n) = λxe . |x |= n

much/little || [Seuren, 1984, Kennedy, 1997]

JmuchK (n) = λd . d ≤ n JlittleK (n) = λd . d ≥ n

truth conditions t || [Krifka, 1999, Von Stechow, 2005, Heim, 2007, Hackl, 2009]

(∃ (n P))(Q) = 1 iff ∃x[|x |= n∧ P(x)∧Q(x)]
[comp](much/little)(n)(P)(Q) = 1 iff |P ∩Q| ∈ Jmuch/littleK (n)
[at-sup](much/little)(n)(P)(Q) = 1 iff |P ∩Q| ∈ Jmuch/littleK (n)

the presupposition of at-sup || [Hackl, 2009, Gajewski, 2010]

| Jmuch/littleK (n)| ≥ 2
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3 Entailments

(16) 3 P Q:
∃x[|x |= 3∧ P(x)∧Q(x)] (l.b.)

(17) more than 3 P Q:
|P ∩Q| ∈ JmuchK (3)⇔|P ∩Q| ∈ {4, 5, . . . } (l.b.)

(18) less than 3 P Q:
|P ∩Q| ∈ JlittleK (3)⇔|P ∩Q| ∈ {. . . , 0, 1, 2} (u.b.)

(19) at most 3 P Q:
|P ∩Q| ∈ JmuchK (3)⇔|P ∩Q| ∈ {. . . , 0, 1, 2, 3} (u.b.)

(20) at least 3 P Q:
|P ∩Q| ∈ JlittleK (3)⇔|P ∩Q| ∈ {3,4, . . . } (l.b.)
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Proposal: Alternatives

Scalar alternatives: Replace the n-domain with an m-domain.

BNs: {∃x[|x |= m∧ P(x)∧Q(x)] : m ∈ S}

CMs: {|P ∩Q| ∈ Jmuch/littleK (m) : m ∈ S}

SMs: {|P ∩Q| ∈ Jmuch/littleK (m) : m ∈ S}

Subdomain alternatives: Replace the n-domain with its subsets.

BNs: NA (the numeral argument is just a degree)

CMs: {|P ∩Q| ∈ A : A⊆ Jmuch/littleK (n)}

SMs: {|P ∩Q| ∈ A : A⊆ Jmuch/littleK (n)} active by presup!

obligatory exhaustification relative to SubDomAlts
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Examples

(21) BNs: 3 P Q

a. Truth conditions: ∃x[|x |= 3∧ P(x)∧Q(x)]
b. ScalAlts: {. . . , ∃x[|x |= 2 . . . ], ∃x[|x |= 4 . . . , . . . }
c. SubDomAlts: NA

(22) CMNs: e.g., more than 3 P Q

a. Truth conditions: |P ∩Q| ∈ JmuchK (3)
b. ScalAlts: {. . . , |P ∩Q| ∈ JmuchK (2), |P ∩Q| ∈ JmuchK (4),

. . . }
c. SubDomAlts: {|P ∩Q| ∈ A : A⊆ JmuchK (3)}

(23) SMNs: e.g., at least 3 P Q

a. Truth conditions: |P ∩Q| ∈ JlittleK (3)
b. ScalAlts: {. . . , |P ∩Q| ∈ JlittleK (2), |P ∩Q| ∈ JlittleK (4), . . . }
c. SubDomAlts: {|P ∩Q| ∈ A : A⊆ JlittleK (3)} active!
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Proposal: Implicature calculation system [Chierchia, 2013]

O to exhaustify the scalar alternatives of BNs, CMNs, and SMNs

(24) JOALT(p)K = p ∧∀q ∈ ALT [q→ p ⊆ q]

OPS to exhaustify the subdomain alternatives of CMNs and SMNs

? A version of O that
- takes into account presuppositions:

(25)
q
OS

ALT(p)
y
= π(p)∧∀q ∈ ALT [π(q)→ π(p) ⊆ π(q)],

- requires a properly stronger result:

(26)
q
OPS

ALT(p)
y

is defined iff OS
ALT(p) ⊂ p.

Whenever defined,
q
OPS

ALT(p)
y
=
q
OS

ALT(p)
y

.

� last resort, silent, matrix-level, universal doxastic modal
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Implicatures from ScalAlts: Scalar implicatures 3

(27) Alice has 3 diamonds.

a. OScalAlts (∃x[|x |= 3∧ P(x)∧Q(x)] ∧)
= ∃x[|x |= 3∧ P(x)∧Q(x)]∧
¬ ∃x[|x |= 4∧ P(x)∧Q(x)] ∧ . . . not 4 3

(28) Alice has at least 3 diamonds.

a. OScalAlts (|P ∩Q|) ∈ JlittleK (3))
= |P ∩Q| ∈ JlittleK (3) ∧
¬ |P ∩Q| ∈ JlittleK (5) ∧ . . . not at least 5 3

(29) If Alice has more than 3 diamonds, she wins.

a. OScalAlts ([|P ∩Q|) ∈ JmuchK (3))→ win]
= [|P ∩Q| ∈ JmuchK (3)→ win] ∧
¬ [|P ∩Q| ∈ JmuchK (2)→ win] ∧ . . . not if more than 2 3

? And so on. We can derive all the attested scalar implicatures.
? Scalar implicatures may be restricted by granularity.
? In unembeded contexts this effect is compounded by ignorance.19 /38



Implicatures from SubDomAlts: Ignorance 3

(30) Alice has more/less than 3 / at most/least 3 diamonds.

a. OPS
SubDomAlts (|P ∩Q|) ∈ D)
= |P ∩Q| ∈ D ∧
¬ |P ∩Q| ∈ A ∧
¬ |P ∩Q| ∈ B ∧ . . . , for all A, B, · · · ⊂ D, =⊥

contradiction 7

b. OPS
SubDomAlts (�|P ∩Q| ∈ D)
=�|P ∩Q| ∈ D ∧
¬ � |P ∩Q| ∈ A ∧
¬ � |P ∩Q| ∈ B ∧ . . . , for all A, B, · · · ⊂ D ignorance 3

? The only consistent OPS
SubDomAlts parse yields ignorance.

? SMNs can only have an OPS
SubDomAlts parse, so *(ignorance)

? CMNs can also have a parse without OPS
SubDomAlts , so (ignorance).
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Scalar implicatures vs. ignorance implicatures

(31) Alice has more than 2 / at least 3 diamonds.
OPS

SubDomAlts �OScalAlts (|P ∩Q|) ∈ {3,4, . . . })
=�OScalAlts (|P ∩Q| ∈ {3,4, . . . }) ∧
¬ � (|P ∩Q| ∈ {3}) ∧
¬ � (|P ∩Q| ∈ {4,7}) ∧ . . .

=�(|P ∩Q| ∈ {3,4, . . . } ∧ ¬|P ∩Q| ∈ {4, . . . }) ∧
¬ � (|P ∩Q| ∈ {3}) ∧
¬ � (|P ∩Q| ∈ {4, 7}) ∧ . . .

=�(|P ∩Q| ∈ {3}) ∧ ¬ � (|P ∩Q| ∈ {3}) ∧

¬ � (|P ∩Q| ∈ {4,7}) ∧ . . .=⊥ contradiction 7

? Prune offending SubDomAlts? That would violate O
PS

SubDomAlts . 7

? Prune offending ScalAlt? 3
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Implicatures from SubDomAlts: Negation 3

(32) Alice doesn’t have more/less than three / *at most/least three
diamonds.

a. ¬OPS
SubDomAlts (|P ∩Q| ∈ D) contradiction 7

b. OPS
SubDomAlts (¬|P ∩Q| ∈ D) PS violated 7

c. OPS
SubDomAlts (�¬|P ∩Q| ∈ D) PS violated 7

? All OPS
SubDomAlts parses fail.

? SMNs cannot have a non-OPS
SubDomAlts parse, so bad.

? CMNs can be parsed without OPS
SubDomAlts , so okay.
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Implicatures from SubDomAlts: AntCond/RestUniv 3

(33) OPS
SubDomAlts (Everyone who has at least 3 diamonds wins.)

Prejacent: ∀x[# di x has ∈ D→ . . . ] ∧ ∃x[# of di x has ∈ D]
⇓ ⇑

SubDomAlt: ∀x[# di x has ∈ D′→ . . . ] ∧ ∃x[# of di x has ∈ D′]

? SubDomAlts not entailed, so they must be false.
? However, negating them leads to contradiction.
? We can rescue the parse with �:

(34)�∃x[# of di x has ∈ D]∧¬� ∃x[# of di x has ∈ D′]
PS satisfied 3

? Thus there is a consistent OPS
SubDomAlts parse for SMNs, which is

why they are felicitous in this type of DE environments.
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The existential implicature of at most [Alrenga, 2016]

(35) LeBron scored at most 20 points (and it’s even possible that
he didn’t score any points at all).
OScalAlts (|P ∩Q| ∈ JmuchK (20))
= |P ∩Q| ∈ JmuchK (20) ∧
¬ |P ∩Q| ∈ JmuchK (18) ∧
¬ |P ∩Q| ∈ JmuchK (17) ∧
. . .
¬ |P ∩Q| ∈ JmuchK (0) existential implicature 3

? Lower-bounding inference is a scalar implicature, which is why
it is defeasible.
? The same can be observed for less than.
? Both follow if we assume CMNs and SMNs have scalar
alternatives.
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The ‘not possible more’ reading of at most under ◊

(36) a. You are allowed to drink at most one beer.
b. OScalAlts (OPS

SubDomAlts (◊|P ∩Q| ∈ JmuchK (1)))
c. Prejacent: OPS

ExhSubDomAlts (◊|P ∩Q| ∈ JmuchK (1))
d. ScalAlts: OPS

ExhSubDomAlts (◊|P ∩Q| ∈ JmuchK (m))
e. Outcome:

OScalAlts (OPS
ExhSubDomAlts (◊|P ∩Q| ∈ JmuchK (1)))

= OPS
ExhSubDomAlts (◊|P ∩Q| ∈ JmuchK (1)) ∧

¬ OPS
SubDomAlts (◊|P ∩Q| ∈ JmuchK (2))

= ◊|P ∩Q| ∈ {0} ∧◊|P ∩Q| ∈ {1} ∧
¬(◊|P ∩Q| ∈ {0} ∧◊|P ∩Q| ∈ {1} ∧◊|P ∩Q| ∈ {2})

not possible more 3

? This follows from a system where OSubDomAlts can apply to
pre-exhaustified alternatives, where OSubDomAlts and OScalAlts can be
manipulated separately, and where OSubDomAlts can be part of the
prejacent and the alternatives operated on by OScalAlts .
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Conclusion

? A unified account of bare, comparative-modified, and
superlative-modified numerals that

- captures more patterns than previous accounts; and

- derives them from

- truth conditions and alternatives obtained in a uniform way
from the morphological pieces of BNs, CMNs, and SMNs, and

- general implicature calculation mechanisms, using general
recipes for deriving scalar implicatures, ignorance effects, polarity
sensitivity, or free choice behavior.
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Open issues

? How does superlativity in SMNs (at-sup) connect to superlativity
in adjectives (sup)?

? Why Proper Strengthening?
(At present it is a stipulation. We could replace it with a ban on
vacuous exhaustification but I think in the general case that might
be too strong. It however seems to be a necessary general
assumption for items with a positive polarity behavior such as
SMNs - [Spector, 2014, Nicolae, 2017]. Parametric choice? Is there any
evidence of SMNs that are not PPIs?)
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Truth conditions, BNs back

(37) 3 people quit.

∃x[|x |= 3∧ JpeopleK (x)∧ JquitK (x)]

λQ .∃x[|x |= 3∧ JpeopleK (x)∧Q(x)]

∃ λx . |x |= 3∧ JpeopleK (x)

JisCardK (J3K) people

quit
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Truth conditions, CMNs back

(38) More/less than 3 people quit.

| JpeopleK ∩ JquitK | ∈ Jmuch/littleK (3)

[comp]
λD〈d,d t〉 .λdd .λP〈e,t〉 .λQ〈e,t〉 . |P ∩Q| ∈ D(n)

much/little

3
people

quit
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Truth conditions, SMNs back

(39) At most/least 3 people quit.

| JpeopleK ∩ JquitK | ∈ Jmuch/littleK (3)

[at-sup]
λD〈d,d t〉 .λdd .λP〈e,t〉 .λQ〈e,t〉 . |P ∩Q| ∈ D(n)

much/little

3
people

quit
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