Puzzle

 $Or, some NP_{SG},$ comparative-modified numerals (CMNs; more/less than 3), and superlative-modified numerals (SMNs; at least/most 3):

all can give rise to ignorance

- (1) $(\Diamond a/m \land \Diamond b/n \land ...)$
 - a. Toby or Sue cheated.
 - b. Some student cheated.
 - c. More than 2 students cheated.
 - d. At least 3 students cheated.

they differ w.r.t. the strength of ignorance

(2)	$(\Box a/n(\land \neg \Box b/m \land \neg \Box$.))
-----	---	-----

- a. Toby cheated.
- #Therefore, Toby or Sue cheated.
- b. Toby cheated.
- Therefore, some student in your class cheated.

[1]

- c. 3 students cheated. Therefore, more than 2 students cheated.
- d. 3 students cheated. #Therefore, at least 3 students cheated.

they differ w.r.t. anti-negativity

(3) (not > [item])

a. John didn't call Toby or Sue.

- [2]b.#John didn't call some student.
- c. John didn't call more than 2 students.
- d.#John didn't call at least 3 students. [3]
- (4) (every > [item])
 - Everyone who called Toby or Sue won.
 - Everyone who called some student won.
 - Everyone who called more than 2 students won.
 - Everyone who called at least 3 students won. [3]

			ignorance		
		total	partial		
onti norotivitu	no	or	CMNs		
anti-negativity	yes	SMNs	some NP_{SG}		
Table: Ignorance and anti-negativity.					

What can explain these patterns?

Ignorance and polarity sensitivity in modified numerals and beyond

Teodora Mihoc Department of Linguistics, Harvard University

A unified approach to ignorance and anti-negativity

Basic ideas

* Silent exhaustivity operator: $[O_{ALT} p]^{g,w} = [p]^{g,w} \land \forall q \in [p]^{ALT} [[q]^{g,w} \to \lambda w' . [p]^{g,w'} \subseteq q].$ * Ignorance is a Free Choice (FC) effect. FC comes out of recursive exhaustification or exhaustification plus Innocent Inclusion or exhaustification relative to pre-exhaustified subdomain alternatives. I adopt the latter, O_{Exh-DA} . [5, 6, 4] \star Partial FC effects: Obligatory O_{Exh-DA} + tolerance to exhaustification relative to just a (natural) subset of the set of subdomain alternatives (e.g., just non-singletons, $O_{Exh-NonSg-DA}$, or just singletons, $O_{Exh-Sg-DA}$). * Anti-negativity: Obligatory O_{Exh-DA} + a requirement that O_{Exh-DA} must lead to a P(roperly) S(tronger) meaning + the assumption that, in checking for PS, we may also consider the presuppositions of the prejacent, if any. [4, 7]

Deriving variation w.r.t ignorance

 \star Consider an exhaustification relative to just non-singleton subdomain alternatives, (5), and an exhaustification relative to just the singleton subdomain alternatives, (6). ($\Box_{\rm S}$ is a silent matrix-level epistemic necessity modal.)

(5) $O_{\text{Exh-NonSg-DA}} \square_{S}(p \lor q \lor r) = \square_{S}(p \lor q \lor r) \land \neg O \square_{S}(p \lor q) \land \land$ $\neg O \square_{\mathrm{S}}(q \lor r)$ $\neg O \square_{\mathrm{S}}(p \lor r)$ \wedge $=\Box_{\mathrm{S}}(p\vee r)\to \Box_{\mathrm{S}}(p\vee q)\vee \Box_{\mathrm{S}}(q\vee r)$ $=\Box_{\mathrm{S}}(p \lor q) \to \Box_{\mathrm{S}}(q \lor r) \lor \Box_{\mathrm{S}}(p \lor r) \qquad =\Box_{\mathrm{S}}(q \lor r) \to \Box_{\mathrm{S}}(p \lor q) \lor \Box_{\mathrm{S}}(p \lor r)$

(6) $O_{\text{Exh-Sg-DA}} \square_{S}(p \lor q \lor r) = \square_{S}(p \lor q \lor r) \land \neg O \square_{S}(p \lor q \lor r)$ $=\Box_{\mathrm{S}}p \rightarrow \Box_{\mathrm{S}}q \lor$

 \star (5) can be verified by both a model of partial ignorance (e.g., $\Box p \land \neg \Box q \land \neg \Box r$) as well as a model of total ignorance $(\neg \Box p \land \neg \Box q \land \neg \Box r)$; (6) can only be verified by a model of total ignorance $(\neg \Box p \land \neg \Box q \land \neg \Box r)$.^a \star Assume all our items have to undergo exhaustification relative to their subdomain alternatives, but for or and SMNs this has to be done relative to the whole set (non-singletons + singletons), while for some NP_{SG} and CMNs this can be done relative to a pruned set consisting of just the non-singletons. Thus, the former can only be verified by a total ignorance model (due to the singletons) while the latter are compatible with a partial ignorance model.

^a For domains of individuals as in the case of $or/some NP_{SG}$, both (5) and (6) can also be verified by models such as $\Box p \land \Box q \land \Box r$ or $\Box p \land \Box q \land \neg \Box r$, but we will assume those possibilities are ruled out by Scalar Implicatures (SIs) of the form $\neg \Box (p \land q \land r)$ or $\neg \Box (p \land q)$.

Deriving variation w.r.t anti-negativity

 \star Consider exhaustification relative to subdomain alternatives for the case of an item in the scope of negation, (7), and for the case of an item in the antecedent of a conditional / restriction of a universal, (8). The latter environments also contain an existential presupposition; assume that too is part of the prejacent acted upon by O.

(7)
$$O_{\text{Exh-DA}} \square_{S} \neg (p \lor q) = \square_{S} \neg (p \lor q)$$

(8) O_{Exh-DA} (assertive-and-presuppositional-component-of) $= \mathcal{O}_{\text{Exh-DA}} \left(\Box_{\mathcal{S}} \forall v [P(v) \lor Q(v) \to R(v)] \land \Box_{\mathcal{S}} \exists v [P(v) \lor Q(v) \to Q(v)] \right)$ like (5)-(6)like (7)

 \star Assume, as before, that all our items have to undergo exhaustification relative to their subdomain alternatives, but for or and CMNs this can be vacuous, while for some NP_{SG} and SMNs it must obey Proper Strengthening. Thus, the former are fine under negation while the latter are not, and both are fine in the antecedent of a conditional restriction of a universal.

$$\underbrace{P}_{\Box_{\mathrm{S}}r} \wedge \underbrace{\neg \mathrm{O} \Box_{\mathrm{S}}(q)}_{=\Box_{\mathrm{S}}q \to \Box_{\mathrm{S}}p \lor \Box_{\mathrm{S}}r} \wedge \underbrace{\neg \mathrm{O} \Box_{\mathrm{S}}(r)}_{=\Box_{\mathrm{S}}r \to \Box_{\mathrm{S}}p \lor \Box_{\mathrm{S}}q}$$

 $(O_{\text{Exh-DA}} \text{ vacuous})$

$$(\Box_{\mathbf{S}} \forall v [P(v) \lor Q(v) \to R(v)]))$$

$$\underline{Q(v)})$$

 $(O_{Exh-DA} \text{ not vacuous})$

Conclusion

- Similar ignorance and polarity sensitivity in disjunction, indefinites, and modified numerals.
- Uniform alternatives-and-exhaustification solution.
- Consequences for theories of modified numerals.

Truth conditions and alternatives: $or/some NP_{SG}$

(9) $\exists x \in \{a, b, \dots\} [P(x)] \Leftrightarrow P(a) \lor P(b) \lor \dots$ DA : Replace $D = \{a, b, ...\}$ with $D' \subset D$. σA : Replace \exists with \forall . (Can also do this for DA.)

Truth conditions and alternatives: CMNs/SMNs

 $(10) \llbracket n \rrbracket = n \text{ (type } d)$ (11) [much] $(n) = \lambda d \cdot d \leq n$ (positive extent [8] of n) (12) [[little]] $(n) = \lambda d \cdot d \ge n$ (negative extent [8] of n) (13) more/less than n $= \left[\left[\text{comp} \right] \right] \left(\left[\text{much/little} \right] \right) \right] (n)$ $= \lambda P_{\langle d,t \rangle} \cdot \max(\lambda d \cdot P(d)) \in [[\operatorname{much/little}]](n)$ E.g., [less than 3 P] = max($\lambda d \cdot P(d)$) \in [little] (2). DA : Replace D = [much/little](n) with $D' \subset D$. σA : Replace *n* with *m*, where $m \in S$ (relevant scale). (14) at most/least n $= \left[\left[\text{[at-sup]} \right] \left(\left[\text{much/little} \right] \right) \right](n)$ $= \lambda P_{\langle d,t \rangle} \cdot \max(\lambda d \cdot P(d)) \in [[\operatorname{much/little}]](n)$ E.g., [at most 2 P] = max($\lambda d \cdot P(d)$) \in [much] (2). DA : Replace D = [much/little](n) with $D' \subset D$. σA : Replace *n* with *m*, where $m \in S$ (relevant scale).

- [1] Bart Geurts, Napoleon Katsos, Chris Cummins, Jonas Moons, and Leo Noordman. Scalar quantifiers: Logic, acquisition, and processing. Language and cognitive processes, 25(1):130-148, 2010.
- 2] Anna Szabolcsi. Positive polarity–negative polarity. NLLT, 22(2):409–452, 2004.
- [3] Teodora Mihoc and Kathryn Davidson. Testing a PPI analysis of superlative-modified numerals, 2017. Talk at XPrag 7.
- [4] Gennaro Chierchia. Logic in grammar: Polarity, free choice, and intervention. Oxford University Press, Oxford, UK, 2013.
- [5] Danny Fox. Free choice and the theory of scalar implicatures. In Uli Sauerland and P. Stateva, editors, *Presupposition and implicature in compositional semantics*, pages 71–120. Palgrave Macmillan, 2007.
- [6] Moshe E Bar-Lev and Danny Fox. Universal free choice and innocent inclusion. In *Proceedings* of SALT, volume 27, pages 95–115, 2017.
- [7] Andreea Nicolae. Deriving the positive polarity behavior of plain disjunction. S & P, 10, 2017.
- [8] Chris Kennedy. Projecting the adjective. The syntax and semantics of gradability and