(Scalarity,) ignorance and positive polarity

in

indefinites, disjunction, and numerals

Teodora Mihoc | tmihoc@fas.harvard.edu

@ Centre de Lingüística Teòrica (CLT), Universitat Autònoma Barcelona (UAB) | May 21, 2021

Outline

Preamble

Q1: Are the facts parallel?

Q2: What is the parallel account?

Q3: Why should we care?

```
It is a truth universally acknowledged that
a single man in possession of a good fortune
must be in want of
a wife.
```

```
It is a truth universally acknowledged that
a single man in possession of a good fortune parallel facts
must be in want of
a wife.
```

```
It is a truth universally acknowledged that

a single man in possession of a good fortune parallel facts

must be in want of

a wife a parallel account.
```

```
It is a truth universally acknowledged that
a single man in possession of a good fortune parallel facts
must be in want of
a wife a parallel account.
```

Q1: Are the facts parallel?

```
It is a truth universally acknowledged that
a single man in possession of a good fortune parallel facts
must be in want of
a wife a parallel account.
```

Q1: Are the facts parallel?Q2: What is the parallel account?

It is a truth universally acknowledged that a single man in possession of a good fortune parallel facts must be in want of a wife a parallel account.

Q1: Are the facts parallel?Q2: What is the parallel account?

In this talk I tackle these questions for the ignorance and positive polarity of numerals, disjunction, and indefinites: *3* (BNs) *more/less than 3* (CMNs) *at least/most 3* (SMNs) *Alice, Bob, or Cindy some student*

It is a truth universally acknowledged that a single man in possession of a good fortune parallel facts must be in want of a wife a parallel account.

Q1: Are the facts parallel?Q2: What is the parallel account?

In this talk I tackle these questions for the ignorance and positive polarity of numerals, disjunction, and indefinites:

3 (BNs) more/less than 3 (CMNs) at least/most 3 (SMNs) Alice, Bob, or Cindy some student

Q3: Why should we care?

Outline

Preamble

Q1: Are the facts parallel?

Q2: What is the parallel account?

Q3: Why should we care?

Numerals, disjunction, indefinites

Horn (1972)

- (1) Jo called 3 students / A or B / some student.
 - a. Jo called $4/5/\ldots$ students / A and B / every student.
 - b. ¬ Jo called 4/5/...students / A and B / every student.
 ⇒ exactly 3 / A xor B / some-but-not-every

(2) Lexical scales + Gricean reasoning

- a. $\langle \dots, \text{ two, three, four,} \dots \rangle$; three \rightsquigarrow not four
- b. $\langle \text{or, and} \rangle$; or \rightsquigarrow not and
- c. $\langle some, every \rangle$; some \rightsquigarrow not every

5

Exit modified numerals

Krifka (1999)

- (3) Jo called more than 2 / less than 4 / at least 3 / at most 3 students.
 - a. more than 3 / less than 3 / at least 4 / at most 2 $\,$
 - b. ¬ # more than 3 / # less than 3 / # at least 4 / # at most 2
 ⇒ # exactly 3 / # exactly 3 / # exactly 3 / # exactly 3

Exit superlative-modified numerals

Geurts and Nouwen (2007), Cohen and Krifka (2014), Mihoc and Davidson (2021)

- (4) Jo called **3** students. So, she called \checkmark more than 2 / # at least 3.
- (5) a. Jo didn't call **/** more than 2 / # at least 3 students.
 - b. Nobody called **✓**more than 2 / # at least 3 people.
 - c. Jo managed without calling **√**more than 2 / # at least 3 people.
 - d. **Few** of the participants called \checkmark more than 2 / # at least 3 people.
 - e. Jo rarely called **✓** more than 2 / # at least 3 people.
 - f. If Jo called \checkmark more than 2 / \checkmark at least 3 people, she won.
 - g. Everyone who called **/more than 2** / **/at least 3** people won.
 - h. Tim doesn't know that Jo called **✓more than 2** / **✓at least 3** people.
 - i. Only kids aged **/**more than 2 / **/**at least 3 can attend.

Re-enter disjunction

Büring (2008); Mihoc (2020, 2021), building on Strawson (1952), Grice (1989), Rips (1994), Chierchia (2013), Spector (2014), Nicolae (2017) a.o.

- (6) Jo called Alice. So, she called # A, B, or C / # A, B, ou C.
- (7) a. Jo did**n't** call **✓**A, B, **or** C / # A, B, **ou** C.
 - b. Nobody called \checkmark A, B, or C / # A, B, ou C.
 - c. Jo managed without calling ✓A, B, or C / # A, B, ou C.
 - d. Few of the participants called ✓A, B, or C / ✓A, B, ou C.
 - e. Jo rarely called \checkmark A, B, or C / \checkmark A, B, ou C.
 - f. If Jo called \checkmark A, B, or C / \checkmark A, B, ou C, she won.
 - g. Everyone who called \checkmark A, B, or C / \checkmark A, B, ou C won.

Re-enter indefinites

Nouwen (2015); Mihoc (2021), building on Strawson (1974), Becker (1999), Chierchia (2013), Alonso-Ovalle and Menéndez-Benito (2015), Kratzer and Shimoyama (2017) a.o.

- (8) a. Jo called Alice. So, she called # un student oarecare / # irgendein student / ✓ some student.
 b. Jo called # un student oarecare / ✓ irgendein student / ✓ some student, but not Alice.
 - (9) Some cabinet minister has been shot.
 → Speaker ignorance or indifference
- (10) a. Jo didn't call # un student oarecare / # irgendein student / # some student.
 - b. Nobody called # un student oarecare / **√irgendein** student / # some student.
 - c. Jo managed without calling *#* un student oarecare / √irgendein student / *#* some student.
 - d. Few of the participants called # un student oarecare / ✓irgendein student / ✓some student.
 - e. Jo rarely called *#* un student oarecare / ✓irgendein student / ✓ some student.
 - f. If Jo called \checkmark un student oarecare / \checkmark irgendein student / \checkmark some student, she won.
 - g. Everyone who called 🗸 un student oarecare / 🗸 irgendein student / 🗸 some student won.

Re-enter comparative-modified numerals

Mihoc (2020, 2021), building also on findings from indefinites, Mayr and Meyer (2014), Westera and Brasoveanu (2014), Cremers et al. (2017)

(11) a.

- b. Jo called \checkmark more than 2 / # at least 3 students, but not 5.
 - (12) Jo called **more than 2** students.
 - ----> Speaker ignorance or indifference

Re-enter bare numerals, modified numerals

Mihoc (2021), building especially on Mayr (2013), Spector (2013, 2014)

- (13) a. Jo called 3 / more than 2 / less than 4 / at least 3 / at most 3 students. $\Rightarrow \neg \checkmark 4$ / # more than 3 / # less than 3 / # at least 4 / # at most 2 $\Rightarrow \checkmark$ exactly 3 / # exactly 3 / # exactly 3 / # exactly 3 / # exactly 3
 - b. Jo didn't call 3 / more than 2 / less than 4 / # at least 3 / # at most 3 students.
 → ¬ not # 2 / # more than 1 / # less than 5 / # at least 2 / # at most 4
 ⇒ # exactly 2 / # exactly 4 / # exactly 2 / # exactly 4
 - c. Everyone called 3 / more than 2 / less than 4 / at least 3 / at most 3 students. $\rightarrow \neg$ everyone $\checkmark 4$ / \checkmark more than 3 / \checkmark less than 3 / \checkmark at least 4 / \checkmark at most 2
 - d. If Jo called 3 / more than 2 / less than 4 / at least 3 / at most 3 students, she won. $\Rightarrow \neg \text{ if } \checkmark 2 / \checkmark \text{ more than } 1 / \checkmark \text{less than } 5 / \checkmark \text{ at least } 2 / \checkmark \text{ at most } 4$
 - e. Jo called 3 / more than 2 / less than 4 / at least 3 / at most 3 students. $\rightarrow \neg \checkmark 4$ / \checkmark more than 4 / \checkmark less than 2 / \checkmark at least 5 / \checkmark at most 1
 - f. Jo didn't call 3 / more than 2 / less than 4 / # at least 3 / # at most 3 students. $\rightarrow \neg$ not \checkmark 1 / \checkmark more than 0 / \checkmark less than 6 / \checkmark at least 1 / \checkmark at most 5

		Ignorance /	Other modal v	ariation effects?	F	ositive polarity	y?	Scalar im- plicatures?
Category	Item	Variation effect	Positive specificity	Negative specificity	Plain DE	DE + pos. presup.	DE + pos. implic.	-
Indefinites	un qualsiasi/qualunque NP (Italian)	yes	no	no	yes	yes	yes	yes
	un NP qualsiasi/qualunque (Italian)	yes	no	no	no	yes	no	yes
	un NP oarecare (Romanian)	yes	no	no	no	yes	no	yes
	un qualche NP (Italian)	yes	no	yes	no	yes	?	yes
	algún (Spanish)	yes	no	yes	no	yes	yes	yes
	irgendein (German)	yes	no	yes	yes	yes	?	yes
	some (English)	yes	yes	yes	no	yes	yes	yes
Disjunction	ou	yes	no	no	no	yes	yes	yes
	or	yes	no	no	yes	yes	yes	yes
Numerals	BNs (e.g., three)	no*	NA	NA	yes	yes	yes	yes*
	CMNs (e.g., more/less than three)	yes	yes	yes	yes	yes	yes	yes*
	SMNs (e.g., at least/most three)	yes	no	no	no	yes	no	yes*

Q1: Are the facts parallel?

Yes, though in a much richer sense than usually acknowledged.

In all of numerals, disjunction and indefinites we find:

- ► a modal variation effect in seemingly episodic contexts:
 - \pm compatibility with specificity (negative, positive, negative & positive)
 - \pm compatibility with DE environments (plain, +positive implicature, +positive presupposition)
- ► Horn-style scalar implicatures

Outline

Preamble

Q1: Are the facts parallel?

Q2: What is the parallel account?

Q3: Why should we care?

Horn (1972), Chierchia et al. (2012), a.o.:

- Numerals, disjunction, and indefinites naturally activate scalar alternatives.
- ► Factoring these in yields scalar implicatures.

Krifka (1999), Fox and Hackl (2006), Mayr (2013), Coppock and Brochhagen (2013), Kennedy (2015), Schwarz (2016), etc.:

MNs do not give rise to Horn scalar implicatures.

Krifka (1999), Geurts and Nouwen (2007), Nouwen (2010), Cohen and Krifka (2014):

► SMNs are special.

Büring (2008), Coppock and Brochhagen (2013), Kennedy (2015), Schwarz (2016), Spector (2015), Nicolae (2017), Mihoc (2020, 2021):

- ► SMNs are disjunction-like.
- ► They activate disjunctive alternatives.
- ► Factoring these in yields total ignorance and positive polarity.

Nouwen (2015), Alonso-Ovalle and Menéndez-Benito (2010), Chierchia (2013), Mihoc (2020, 2021):

- ► SMNs and disjunction are indefinite-like.
- ► They activate subdomain alternatives.
- Factoring these in yields ignorance ± compatibility with negative and/or positive specificity and ± positive polarity.

Mihoc (2020, 2021):

- ► MNs and disjunction are indefinite-like.
- ► They activate subdomain alternatives.
- Factoring these in yields ignorance ± compatibility with negative and/or positive specificity and ± positive polarity.

Mihoc (2020, 2021):

- Numerals, disjunction, and indefinites are item-with-domain- and item-with-scale-like.
- They naturally activate scalar and, except for BNs, also subdomain alternatives.
- ► Factoring these in (in very specific ways) yields ignorance ± compatibility with negative and/or positive specificity and ± polarity sensitivity, and Horn-style scalar implicatures.
- In numerals, in certain contexts, due to the nature of the domain, ignorance and scalar implicatures clash, hence the occasional scalar implicature gaps.

Concrete illustration: Truth conditions and alternatives

- (14) Jo called Alice or Bob. (15) Jo called some student_{Alice, Bob}.
 - $\begin{array}{cccc} a & b & (DA) \\ \downarrow & & \\ a \lor b & \leftarrow & a \land b & (SA) \end{array}$
- 15) Jo called less than 2 people. Jo called at most 1 person.

$$\begin{array}{cccc}
0 & 1 & (DA) \\
\downarrow \\
0 & \rightarrow & \mathbf{0} \lor \mathbf{1} \to & \mathbf{0} \lor \mathbf{1} \lor \mathbf{2} \to \dots \text{ (SA)}
\end{array}$$

(16)Jo called Alice, Bob, or Cindy.(17)Jo called less than 3 people.Jo called some student{Alice, Bob, Cindy}.Jo called at most 2 people.

0

 $a \ b \ c \qquad (DA)$ $a \lor b \ a \lor c \ b \lor c$ \downarrow $a \lor b \lor c \leftarrow a \land b, \ldots \leftarrow a \land b \land c(SA)$

$$0 \ 1 \ 2 \qquad (DA)$$

$$0 \lor 1 \ 0 \lor 2 \ 1 \lor 2$$

$$\downarrow$$

$$\rightarrow 0 \lor 1 \rightarrow 0 \lor 1 \lor 2 \rightarrow \cdots \lor 3 \rightarrow \dots (SA)$$

Concrete illustration: Implicature calculation mechanism

Contradiction-based O(nly). Pre-exhaustification (with IE) relative to DA of same size (or smaller). (* = crucial only for computations with \diamond)

(18)
$$O_{ExhDA}(a \lor b) = (19) \qquad O_{ExhDA}(0 \lor 1) = (0 \lor 1) \land \neg O_{A} \land O_{A$$

Concrete illustration: Ignorance

(23)
$$O_{ExhDA} \diamondsuit (0 \lor 1) = \diamondsuit (0 \lor 1) \land \neg \underbrace{0 \diamondsuit 0}_{\diamondsuit 0 \land \neg \diamondsuit 1} \land \neg \underbrace{0 \diamondsuit 1}_{\diamondsuit 1 \land \neg \diamondsuit 0} \land \neg \underbrace{0 \diamondsuit 1}_{\diamondsuit 1 \land \neg \diamondsuit 0}$$

(24)
$$O_{ExhDA} \square (a \lor b) = \square (a \lor b) \land \neg \underbrace{O\square a}_{\square a \land \square b} \land \neg \underbrace{O\square b}_{\square b \land \square a} \land \neg \underbrace{O\square b}_{\square b \to \square a}$$

(25) $O_{ExhDA} \square (0 \lor 1)$ $= \square (0 \lor 1) \land \neg \underbrace{O \square 0}_{\square 0 \land \square 1} \land \neg \underbrace{O \square 1}_{\square 1 \land \square 0}$

Concrete illustration: Compatibility with specificity

26)
$$O_{ExhSgDA}(\Box_{S}(a \lor b \lor c))$$

$$= \Box_{S}(a \lor b \lor c) \land$$

$$(\Box_{S}a \to \Box_{S}b \lor \Box_{S}c) \land$$

$$(\Box_{S}b \to \Box_{S}a \lor \Box_{S}c) \land$$

$$(\Box_{S}c \to \Box_{S}a \lor \Box_{S}b)$$

$$\checkmark total ignorance, \checkmark neg. specificity$$

(28) $O_{ExhNonSgDA}(\Box_{S}(a \lor b \lor c)) = \Box_{S}(a \lor b \lor c) \land \\ (\Box_{S}(a \lor b) \to \Box_{S}(a \lor c) \lor \Box_{S}(b \lor c)) \land \\ (\Box_{S}(a \lor c) \to \Box_{S}(a \lor b) \lor \Box_{S}(b \lor c)) \land \\ (\Box_{S}(b \lor c) \to \Box_{S}(a \lor b) \lor \Box_{S}(a \lor c)) \land \\ (\Box_{S}(b \lor c) \to \Box_{S}(a \lor b) \lor \Box_{S}(a \lor c)) \lor \checkmark total ignorance, \checkmark pos. specificity$

(27) $O_{ExhSgDA}(\Box_{S}(0 \lor 1 \lor 2)) = \Box_{S}(0 \lor 1 \lor 2) \land (\Box_{S} 0 \to \Box_{S} 1 \lor \Box_{S} 2) \land (\Box_{S} 1 \to \Box_{S} 0 \lor \Box_{S} 2) \land (\Box_{S} 2 \to \Box_{S} 0 \lor \Box_{S} 1) \land (\Box_{S} 2 \to \Box_{S} 0 \lor \Box_{S} 1) \checkmark total ignorance, \checkmark neg. specificity$

(29) $O_{ExhNonSgDA}(\Box_{S}(0 \lor 1 \lor 2)) = \Box_{S}(0 \lor 1 \lor 2) \land$ $(\Box_{S}(0 \lor 1) \to \Box_{S}(0 \lor 2) \lor \Box_{S}(1 \lor 2)) \land$ $(\Box_{S}(0 \lor 2) \to \Box_{S}(0 \lor 1) \lor \Box_{S}(1 \lor 2)) \land$ $(\Box_{S}(1 \lor 2) \to \Box_{S}(0 \lor 1) \lor \Box_{S}(0 \lor 2)) \checkmark$ total ignorance, \checkmark pos. specificity

Concrete illustration: Polarity sensitivity

Concrete illustration: Compatibility with some DE environments

Concrete illustration: Scalar implicatures

(34)
$$O_{SA} \Box_{S}(a \lor b \lor c) = \Box_{S}(a \lor b \lor c) \land \neg \Box_{S}(a \land b) \land \cdots \land \neg \Box_{S}(a \land b \land c)$$

$$(36) \qquad \Box_{\rm S} O_{\rm SA}(a \lor b \lor c) = \Box_{\rm S}((a \lor b \lor c) \land \neg(a \land b) \land \cdots \land \neg(a \land b \land c))$$

$$(35) \qquad \begin{array}{l} O_{SA} \square_{S}(0 \lor 1 \lor 2) \\ \square_{S}(0 \lor 1 \lor 2) \land \neg \square_{S}(0 \lor 1) \end{array}$$

(37)
$$\Box_{S}O_{SA}(0 \lor 1 \lor 2)$$
$$\Box_{S}((0 \lor 1 \lor 2) \land \neg (0 \lor 1))$$
$$= \Box_{S}2$$
clash with ignorance from O_{ExhDA} !

Q2: What is the parallel account?

It is an alternative-based account, though much more unified than in previous literature:

In all of indefinites, disjunction, and numerals we have obligatory:

• (except for BNs:) O_{ExhDA} :

 \pm ability to tolerate O_{ExhDA} relative to just natural subsets—SgDA, NonSgDA \pm ability to tolerate O_{ExhDA} that does not lead to a properly stronger meaning

► (including BNs) O_{SA}

Outline

Preamble

Q1: Are the facts parallel?

Q2: What is the parallel account?

Q3: Why should we care?

Others: Natural languages are supralogical = idiosyncratic, illogical.

Others: Natural languages are supralogical = idiosyncratic, illogical.

Grice: Natural languages are supralogical = principled, very logical.

Others: Natural languages are supralogical = idiosyncratic, illogical.

Grice: Natural languages are supralogical = principled, very logical.

▶ impact: very successful for many effects in many categories of language

Others: Natural languages are supralogical = idiosyncratic, illogical.

Grice:

Natural languages are supralogical = principled, very logical.

- ► impact: very successful for many effects in many categories of language
- ► challenge: supralogical effects rich, vary both between and within categories of language

Others: Natural languages are supralogical = idiosyncratic, illogical.

Grice:

Natural languages are supralogical = principled, very logical.

- ► impact: very successful for many effects in many categories of language
- ► challenge: supralogical effects rich, vary both between and within categories of language
- ► consequence: tempting to give up on supralogical = principled, very logical

Others: Natural languages are supralogical = idiosyncratic, illogical.

Grice:

Natural languages are supralogical = principled, very logical.

- ► impact: very successful for many effects in many categories of language
- ► challenge: supralogical effects rich, vary both between and within categories of language
- ► consequence: tempting to give up on supralogical = principled, very logical
- ► main point today: we don't have to

Thank you!

Appendix

[1]

(assertion)

(assertion)

(38) Jo called some student. $\exists x \in [[student]][C(j,x)]$

(39) Jo called a, b, ..., or ...

$$\bigvee_{x \in \{a,b, \dots\}} C(j,x) \Leftrightarrow C(j,b) \lor \dots \qquad (assertion)$$

(40) Three people quit.
$$\exists x[|x| = 3 \land P(x) \land Q(x)]$$

- (41) More/less than 3 people quit. $\max(\lambda d . \exists x[|x| = d \land P(x) \land Q(x)]) \in \boxed{[much/little](3)}$ (assertion)
- (42) At most/least 3 people quit. $\max(\lambda d . \exists x[|x| = d \land P(x) \land Q(x)]) \in \boxed{[much/little]](3)}$ (assertion)

Appendix

scenarios of interest

total variation	partial v	variation	no variation			
'no winner'	neg. specificity 'one loser'	pos. specificity 'one winner'-1	pos. specificity 'one winner'-2	'all winners'		
e.g.,	e.g.,	e.g.,	e.g.,	e.g.,		
<i>w</i> ₁ : x y z	<i>w</i> ₁ : x y z	w_1 : x y z	<i>w</i> ₁ : х у z	<i>w</i> ₁ : x y z		
<i>w</i> ₂ : x y z	<i>w</i> ₂ : x y z	<i>w</i> ₂ : x y z	<i>w</i> ₂ : х у	<i>w</i> ₂ : x y z		
<i>w</i> ₃ : x y z	<i>w</i> ₃ : x y z	<i>w</i> ₃ : x y z	<i>w</i> ₃ : х у z	<i>w</i> ₃ : x y z		

References I

- Alonso-Ovalle, L. and Menéndez-Benito, P. (2010). Modal indefinites. *Natural Language Semantics*, 18(1):1–31.
- Alonso-Ovalle, L. and Menéndez-Benito, P. (2015). Epistemic indefinites: An overview. In Alonso-Ovalle, L. and Menéndez-Benito, P., editors, *Epistemic Indefinites*, pages 1–27. Oxford, UK: Oxford University Press.
- Becker, M. (1999). The some indefinites. In Storto, G., editor, *UCLA Working Papers in Linguistics*, volume 3.
- Büring, D. (2008). The least at least can do. In Chang, C. B. and Haynie, H. J., editors, West Coast Conference on Formal Linguistics (WCCFL) 26, pages 114–120. Cascadilla Proceedings Project, Somerville, MA.
- Chierchia, G. (2013). *Logic in grammar: Polarity, free choice, and intervention*. Oxford University Press, Oxford, UK.
- Chierchia, G., Fox, D., and Spector, B. (2012). Scalar implicature as a grammatical phenomenon. In *Semantics: An international handbook of natural language meaning*, volume 3, pages 2297–2331. Berlin & Boston: de Gruyter.
- Cohen, A. and Krifka, M. (2014). Superlative quantifiers and meta-speech acts. *Linguistics and Philosophy*, 37(1):41–90.

References II

- Coppock, E. and Brochhagen, T. (2013). Raising and resolving issues with scalar modifiers. *Semantics & Pragmatics*, 6(3):1–57.
- Cremers, A., Coppock, E., Dotlacil, J., and Roelofsen, F. (2017). Modified numerals: Two routes to ignorance. Ms., ILLC, U of Amsterdam.

https://semanticsarchive.net/Archive/jk2M2Q30/paper.pdf.

- Fox, D. and Hackl, M. (2006). The universal density of measurement. *Linguistics and Philosophy*, 29(5):537–586.
- Gajewski, J. (2011). Licensing strong NPIs. Natural Language Semantics, 19(2):109–148.
- Geurts, B. and Nouwen, R. (2007). *At least* et al.: The semantics of scalar modifiers. *Language*, pages 533–559.
- Grice, H. P. (1989). Studies in the way of words. Harvard University Press.
- Horn, L. (1972). On the semantic properties of logical operators in English. University Linguistics Club.
- Kennedy, C. (2015). A "de-Fregean" semantics (and neo-Gricean pragmatics) for modified and unmodified numerals. *Semantics & Pragmatics*, 8(10):1–44.

References III

- Kratzer, A. and Shimoyama, J. (2017). *Indeterminate Pronouns: The View from Japanese*, pages 123–143. Springer International Publishing, Cham. For a long time circulated and cited as Kratzer and Shimoyama (2012).
- Krifka, M. (1999). At least some determiners aren't determiners. *The semantics/pragmatics interface from different points of view*, 1:257–291.
- Mayr, C. (2013). Implicatures of modified numerals. In Caponigro, I. and Cecchetto, C., editors, *From grammar to meaning: The spontaneous logicality of language*, pages 139–171.
- Mayr, C. and Meyer, M.-C. (2014). More than at least. Slides presented at the *Two days at least* workshop, Utrecht.
- Mihoc, T. (2020). Ignorance and anti-negativity in the grammar: *Or/some* and modified numerals. In *Proceedings of the Annual Meeting of the North East Linguistic Society (NELS)* 50, pages 197–210.
- Mihoc, T. (2021). Modified numerals and polarity sensitivity: Between O(nly)_{DA} and E(ven)_{SA}. In *To appear in Proceedings of Sinn und Bedeutung (SuB) 25*, page TBA.
- Mihoc, T. and Davidson, K. (2021). Superlative-modified numerals and negation: A multiply negotiable cost. To appear in *Proceedings of Experiments in Linguistic Meaning (ELM)* 1.

References IV

- Nicolae, A. (2017). Deriving the positive polarity behavior of plain disjunction. *Semantics & Pragmatics*, 10:1–24.
- Nouwen, R. (2010). Two kinds of modified numerals. Semantics & Pragmatics, 3(3):1-41.
- Nouwen, R. (2015). Modified numerals: The epistemic effect. In Alonso-Ovalle, L. and Menéndez-Benito, P., editors, *Epistemic Indefinites*, pages 244–266. Oxford, UK: Oxford University Press.
- Rips, L. J. (1994). *The psychology of proof: Deductive reasoning in human thinking*. MIT Press.
 Schwarz, B. (2016). Consistency preservation in quantity implicature: The case of *at least*. *Semantics & Pragmatics*, 9:1–1.
- Spector, B. (2013). Bare numerals and scalar implicatures. *Language and Linguistics Compass*, 7(5):273–294.
- Spector, B. (2014). Global positive polarity items and obligatory exhaustivity. *Semantics & Pragmatics*, 7(11):1–61.
- Spector, B. (2015). Why are class B modifiers global PPIs? Handout for talk at Workshop on Negation and Polarity, February 8-10, 2015, The Hebrew University of Jerusalem.

Strawson, P. (1952). Introduction to logical theory. London: Methuen.

Strawson, P. (1974). Subject and Predicate in Logic and Grammar. London: Methuen.

References V

Westera, M. and Brasoveanu, A. (2014). Ignorance in context: The interaction of modified numerals and QUDs. In Todd Snider, Sarah D'Antonio, M. W., editor, *Semantics and Linguistic Theory (SALT) 24*, pages 414–431. LSA and CLC Publications.